【題目】要說明(abc)2a2b2c22ab2ac2bc成立,三位同學(xué)分別提供了一種思路,請根據(jù)他們的思路寫出推理過程.
(1)小剛說:可以根據(jù)乘方的意義來說明等式成立;
(2)小王說:可以將其轉(zhuǎn)化為兩數(shù)和的平方來說明等式成立;
(3)小麗說:可以構(gòu)造圖形,通過計算面積來說明等式成立;
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,C(0,5),D(a,5)(a >0),A、B 在 x 軸上,∠1=∠D,求證:∠ACB+∠BED=180°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】【問題探究】
已知:如圖①所示,∠MPN的頂點為P,⊙O的圓心O從頂點P出發(fā),沿著PN方向平移.
(1)如圖②所示,當(dāng)⊙O分別與射線PM,PN相交于A、B、C、D四個點,連接AC、BD,可以證得△PAC∽△ , 從而可以得到:PAP B=P CP D.
(2)如圖③所示,當(dāng)⊙O與射線PM相切于點A,與射線PN相交于C、D兩個點.求證:PA2=PCPD.
(3)【簡單應(yīng)用】
如圖④所示,(2)中條件不變,經(jīng)過點P的另一條射線與⊙O相交于E、F兩點.利用上述(1),(2)兩問的結(jié)論,直接寫出線段PA與PE、PF之間的數(shù)量關(guān)系;當(dāng)PA=4 ,EF=2,則PE= .
(4)【拓展延伸】如圖⑤所示,在以O(shè)為圓心的兩個同心圓中,A、B是大⊙O上的任意兩點,經(jīng)過A、B 兩點作線段,分別交小⊙O于C、E、D、F四個點.求證:ACAE=BDBF.(友情提醒:可直接運(yùn)用本題上面所得到的相關(guān)結(jié)論)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,在△ABC中,BD是△ABC的角平分線,點D在AC上,DE∥BC,交AB于點E,∠A=50°,∠ADB=110°,求△BDE各內(nèi)角的度數(shù);
(2)完成下列推理過程.
已知:如圖2,AD⊥BC,EF⊥BC,∠1=∠2,求證:DG∥AB.推理過程:因為AD⊥BC,EF⊥BC(已知),
所以∠EFB=∠ADB=90°(________).
所以EF∥AD(同位角相等,兩直線平行).
所以∠1=∠BAD(________).
因為∠1=∠2(已知),
所以________=________(等量代換).
所以DG∥AB(內(nèi)錯角相等,兩直線平行).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(類比學(xué)習(xí))
小明同學(xué)類比除法2401615的豎式計算,想到對二次三項式x23x2進(jìn)行因式分解的方法:
即x23x2x1x2,所以x23x2x1x2.
(初步應(yīng)用)
小明看到了這樣一道被墨水污染的因式分解題:x2□x6x2x☆,(其中□、☆代表兩個被污染的系數(shù)),他列出了下列豎式:
得出□=___________,☆=_________.
(深入研究)
小明用這種方法對多項式x22x2-x-2進(jìn)行因式分解,進(jìn)行到了:x32x2-x-2x2*.(*代表一個多項式),請你利用前面的方法,列出豎式,將多項式x32x2-x-2因式分解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分線BE交AC的延長線于點E.
(1)求∠CBE的度數(shù);
(2)過點D作DF∥BE,交AC的延長線于點F,求∠F的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一架方梯AB長25米,如圖所示,斜靠在一面上:
(1)若梯子底端離墻7米,這個梯子的頂端距地面有多高?
(2)在(1)的條件下,如果梯子的頂端下滑了4米,那么梯子的底端在水平方向滑動了幾米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了美化環(huán)境,建設(shè)宜居成都,我市準(zhǔn)備在一個廣場上種植甲、乙兩種花卉,經(jīng)市場調(diào)查,甲種花卉的種植費(fèi)用y(元)與種植面積x(m2)之間的函數(shù)關(guān)系如圖所示,乙種花卉的種植費(fèi)用為每平方米100元.
(1)直接寫出當(dāng)0≤x≤300和x>300時,y與x的函數(shù)關(guān)系式;
(2)廣場上甲、乙兩種花卉的種植面積共1200m2,若甲種花卉的種植面積不少于200m2,且不超過乙種花卉種植面積的2倍,那么應(yīng)該怎樣分配甲、乙兩種花卉的種植面積才能使種植總費(fèi)用最少?最少總費(fèi)用為多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com