【題目】如圖,長方形中,,,,,點從點出發(fā)(不含點)以的速度沿的方向運動到點停止,點出發(fā)后,點才開始從點出發(fā)以的速度沿的方向運動到點停止,當點到達點時,點恰好到達點.
(1)當點到達點時,的面積為,求的長;
(2)在(1)的條件下,設點運動時間為,運動過程中的面積為,請用含的式子表示面積,并直接寫出的取值范圍.
【答案】(1);(2).
【解析】
(1)先求出點P到A的時間,再根據(jù)的面積可求出a的值,然后根據(jù)“當點到達點,點恰好到點”列出等式求解即可得;
(2)分三種情況:點P在線段AD上,點Q未出發(fā);當P在線段AD上,點Q在線段CD上;當P在線段AB上,點Q在線段CD上;然后分別利用長方形的性質(zhì)、三角形的面積公式求解即可得.
(1)點到的時間為,此時
設
當點到達點,點恰好到點
解得
故的長為;
(2)依題意,分以下三種情況討論:
①當時,點P在線段AD上,點未出發(fā)
如圖1,過點作于點
②如圖2,當,即時,點在線段上,點在線段上
則,
③當,即時,點在線段上,點在線段上
如圖3,過點作于點
則
綜上,.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,D是BC的中點,過D點的直線GF交AC于F,交AC的平行線BG于G點,DE⊥DF,交AB于點E,連結(jié)EG、EF.
(1)求證:BG=CF;
(2)請你判斷BE+CF與EF的大小關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)問題:如圖在中,,,為邊上一點(不與點,重合),連接,過點作,并滿足,連接.則線段和線段的數(shù)量關(guān)系是_______,位置關(guān)系是_______.
(2)探索:如圖,當點為邊上一點(不與點,重合),與均為等腰直角三角形,,,.試探索線段,,之間滿足的等量關(guān)系,并證明你的結(jié)論;
(3)拓展:如圖,在四邊形中,,若,,請直接寫出線段的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知在平面直角坐標系中,△ABC三個頂點的坐標分別是A(1,1),B (4,2),C(3,4).
(1)畫出△ABC關(guān)于y軸對稱的△A1B1C1(要求:A與A1,B與B1,C與C1相對應);
(2)通過畫圖,在x軸上確定點Q,使得QA與QB之和最小,畫出QA與QB,并直接寫出點Q的坐標.點Q的坐標為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,已知線段AB、CD相交于點O,連接AC、BD,則我們把形如這樣的圖形稱為“8字型”.
(1)求證:∠A+∠C=∠B+D;
(2)如圖2,若∠CAB和∠BDC的平分線AP和DP相交于點P,且與CD、AB分別相交于點M、N.
①以線段AC為邊的“8字型”有 個,以點O為交點的“8字型”有 個;
②若∠B=100°,∠C=120°,求∠P的度數(shù);
③若角平分線中角的關(guān)系改為“∠CAP=∠CAB,∠CDP=∠CDB”,試探究∠P與∠B、∠C之間存在的數(shù)量關(guān)系,并證明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖所示,圖象過點(﹣1,0),對稱軸為直線x=2,下列結(jié)論:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若點A(﹣3,y1)、點B(﹣,y2)、點C(,y3)在該函數(shù)圖象上,則y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的兩根為x1和x2,且x1<x2,則x1<﹣1<5<x2.其中正確的結(jié)論有( )
A. 2個 B. 3個 C. 4個 D. 5個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某水果基地計劃裝運甲、乙、丙三種水果到外地銷售(每輛汽車規(guī)定滿載,并且只裝一種水果).如表為裝運甲、乙、丙三種水果的重量及利潤.
甲 | 乙 | 丙 | |
每輛汽車能裝的數(shù)量(噸) | 4 | 2 | 3 |
每噸水果可獲利潤(千元) | 5 | 7 | 4 |
(1)用8輛汽車裝運乙、丙兩種水果共22噸到A地銷售,問裝運乙、丙兩種水果的汽車各多少輛?
(2)水果基地計劃用20輛汽車裝運甲、乙、丙三種水果共72噸到B地銷售(每種水果不少于一車),假設裝運甲水果的汽車為m輛,則裝運乙、丙兩種水果的汽車各多少輛?(結(jié)果用m表示)
(3)在(2)問的基礎上,如何安排裝運可使水果基地獲得最大利潤?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“圓材埋壁”是我國著名的數(shù)學著作《九章算術(shù)》中的一個問題,“今有圓材,埋于壁中,不知大小,以鋸鋸之,深一寸,鋸道長一尺,問徑幾何?” 用現(xiàn)代的數(shù)學語言表達是:“如圖,CD是⊙O的直徑,弦AB⊥CD,垂足為E,CE = 1寸,AB = 1尺,求直徑的長”. 依題意,CD長為( )
A. 寸 B. 13寸 C. 25寸 D. 26寸
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com