【題目】如圖,△ABC在平面直角坐標(biāo)系內(nèi),頂點(diǎn)的坐標(biāo)分別為A(﹣4,4),B(﹣2,5),C(﹣2,1).
(1)平移△ABC,使點(diǎn)C移到點(diǎn)C1(﹣2,﹣4),畫(huà)出平移后的△A1B1C1,并寫(xiě)出點(diǎn)A1,B1的坐標(biāo);
(2)將△ABC繞點(diǎn)(0,3)旋轉(zhuǎn)180°,得到△A2B2C2,畫(huà)出旋轉(zhuǎn)后的△A2B2C2;
(3)求(2)中的點(diǎn)C旋轉(zhuǎn)到點(diǎn)C2時(shí),點(diǎn)C經(jīng)過(guò)的路徑長(zhǎng)(結(jié)果保留π).
【答案】(1)畫(huà)圖見(jiàn)解析, A1(﹣4,﹣1),B1(﹣2,0);(2)畫(huà)圖見(jiàn)解析;(3)點(diǎn)C經(jīng)過(guò)的路徑長(zhǎng)為2π.
【解析】(1)根據(jù)點(diǎn)C移到點(diǎn)C1(-2,-4),可知向下平移了5個(gè)單位,分別作出A、B、C的對(duì)應(yīng)點(diǎn)A1、B1、C1即可解決問(wèn)題;
(2)根據(jù)中心對(duì)稱的性質(zhì),作出A、B、C的對(duì)應(yīng)點(diǎn)A2、B2、C2即可;
(3)利用勾股定理計(jì)算CC2,可得半徑為2,根據(jù)圓的周長(zhǎng)公式計(jì)算即可.
(1)如圖所示,則△A1B1C1為所求作的三角形,
∴A1(-4,-1),B1(-2,0);
(2)如圖所示,則△A2B2C2為所求作的三角形,
(3)點(diǎn)C經(jīng)過(guò)的路徑長(zhǎng):是以(0,3)為圓心,以CC2為直徑的半圓,
由勾股定理得:CC2=,
∴點(diǎn)C經(jīng)過(guò)的路徑長(zhǎng):.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于點(diǎn)D,點(diǎn)O在AB上,⊙O經(jīng)過(guò)A,D兩點(diǎn),交AB于點(diǎn)E,交AC于點(diǎn)F
(1)求證:BC是⊙O的切線;
(2)若⊙O半徑是2cm,F是弧AD的中點(diǎn),求陰影部分的面積(結(jié)果保留π和根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“校園安全”越來(lái)越受到人們的關(guān)注,我市某中學(xué)對(duì)部分學(xué)生就校園安全知識(shí)的了解程度,采用隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計(jì),繪制了下面兩幅尚不完整的統(tǒng)計(jì)圖.根據(jù)圖中信息回答下列問(wèn)題:
(1)接受問(wèn)卷調(diào)查的學(xué)生共有______人,條形統(tǒng)計(jì)圖中m的值為______;
(2)扇形統(tǒng)計(jì)圖中“了解很少”部分所對(duì)應(yīng)扇形的圓心角的度數(shù)為______;
(3)若該中學(xué)共有學(xué)生1800人,根據(jù)上述調(diào)查結(jié)果,可以估計(jì)出該學(xué)校學(xué)生中對(duì)校園安全知識(shí)達(dá)到“非常了解”和“基本了解”程度的總?cè)藬?shù)為______人;
(4)若從對(duì)校園安全知識(shí)達(dá)到“非常了解”程度的2名男生和2名女生中隨機(jī)抽取2人參加校園安全知識(shí)競(jìng)賽,請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法,求恰好抽到1名男生和1名女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別是A(1,1),B(4,1),C(3,3).
(1)將△ABC向下平移5個(gè)單位后得到△A1B1C1,請(qǐng)畫(huà)出△A1B1C1;
(2)將△ABC繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后得到△A2B2C2,請(qǐng)畫(huà)出△A2B2C2;
(3)判斷以O,A1,B為頂點(diǎn)的三角形的形狀.(無(wú)須說(shuō)明理由)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)在線段上,在的同側(cè)作等腰和等腰,與、分別交于點(diǎn)、.對(duì)于下列結(jié)論:
①;②;③.其中正確的是( )
A. ①②③ B. ① C. ①② D. ②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,sinB=,點(diǎn)D在BC邊上,∠ADC=45°,DC=6,tan∠BAD=___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,按以下步驟作圖:①以A為圓心,任意長(zhǎng)為半徑作弧,分別交AB,AD于點(diǎn)M,N;②分別以M,N為圓心,以大于MN的長(zhǎng)為半徑作弧,兩弧相交于點(diǎn)P;③作AP射線,交邊CD于點(diǎn)Q,若DQ=2QC,BC=3,則平行四邊形ABCD周長(zhǎng)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD長(zhǎng)與寬的比為3:2,點(diǎn)E,F分別在邊AB、BC上,tan∠1=,tan∠2=,則cos(∠1+∠2)=( 。
A.B.C.D.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為鼓勵(lì)大學(xué)畢業(yè)生自主創(chuàng)業(yè),某市政府出臺(tái)了相關(guān)政策:由政府協(xié)調(diào),本市企業(yè)按成本價(jià)提供產(chǎn)品給大學(xué)畢業(yè)生自主銷售,成本價(jià)與出廠價(jià)之間的差價(jià)由政府承擔(dān).李明按照相關(guān)政策投資銷售本市生產(chǎn)的一種新型節(jié)能燈.已知這種節(jié)能燈的成本價(jià)為每件元,出廠價(jià)為每件元,每月銷售量(件)與銷售單價(jià)(元)之間的關(guān)系近似滿足一次函數(shù):.
(1)李明在開(kāi)始創(chuàng)業(yè)的第一個(gè)月將銷售單價(jià)定為元,那么政府這個(gè)月為他承擔(dān)的總差價(jià)為多少元?
(2)設(shè)李明獲得的利潤(rùn)為(元),當(dāng)銷售單價(jià)定為多少元時(shí),每月可獲得最大利潤(rùn)?
(3)物價(jià)部門規(guī)定,這種節(jié)能燈的銷售單價(jià)不得高于元.如果李明想要每月獲得的利潤(rùn)不低于元,那么政府為他承擔(dān)的總差價(jià)最少為多少元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com