【題目】已知二次函數(shù)圖象的頂點(diǎn)坐標(biāo)為(3,8),該二次函數(shù)圖像的對(duì)稱(chēng)軸與軸的交點(diǎn)為A,M是這個(gè)二次函數(shù)圖像上的點(diǎn),是原點(diǎn)
(1)不等式是否成立?請(qǐng)說(shuō)明理由;
(2)設(shè)是△AMO的面積,求滿足的所有點(diǎn)M的坐標(biāo).
(3)將(2)中符號(hào)條件的點(diǎn)M聯(lián)結(jié)起來(lái)構(gòu)成怎樣的特殊圖形?寫(xiě)出兩條這個(gè)特殊圖形的性質(zhì).
【答案】(1)成立,理由見(jiàn)解析;(2) ;(3)這是一個(gè)等腰梯形,性質(zhì)1:等腰梯形同一底的兩個(gè)底角相等;性質(zhì)2:等腰梯形是一個(gè)軸對(duì)稱(chēng)圖形.
【解析】
(1)求出函數(shù)解析式,確定b,c的值,即可做出判斷;
(2)表示出點(diǎn)A、M坐標(biāo),根據(jù)三角形面積公式計(jì)算即可;
(3)連接四個(gè)點(diǎn),結(jié)合四個(gè)點(diǎn)的坐標(biāo)以及拋物線的軸對(duì)稱(chēng)性即可得.
(1)由題意得,
∴
把(3,8)代入中,解得
∴解析式為,
∴,
∴不等式成立;
(2)由題意得點(diǎn)A坐標(biāo)為(3,0),設(shè)M()
即
∴
∴
①當(dāng)
解得
∴
②當(dāng)
解得
∴滿足條件的點(diǎn)M的坐標(biāo)為: ;
(3)如圖,順次鏈接(2)中四個(gè)點(diǎn),由(2)得M1M2∥M3M4,根據(jù)拋物線的對(duì)稱(chēng)性得M1M4=M2M3,∴四邊形M1M2M3M4是一個(gè)等腰梯形,
性質(zhì)1:等腰梯形同一底的兩個(gè)底角相等;
性質(zhì)2:等腰梯形是一個(gè)軸對(duì)稱(chēng)圖形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB為直徑,C、D是上點(diǎn),連結(jié)CB并延長(zhǎng)與AD所在直線交于點(diǎn)F,,垂足為點(diǎn)E,連結(jié)CE,且.
(1)證明:CE與相切;
(2)若,,求AD的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,Rt△ABC中,∠ABC=90°,P是斜邊AC上一個(gè)動(dòng)點(diǎn),以BP為直徑作⊙O交BC于點(diǎn)D,與AC的另一個(gè)交點(diǎn)為E(點(diǎn)E在點(diǎn)P右側(cè)),連結(jié)DE、BE,已知AB=3,BC=6.
(1)求線段BE的長(zhǎng);
(2)如圖2,若BP平分∠ABC,求∠BDE的正切值;
(3)是否存在點(diǎn)P,使得△BDE是等腰三角形,若存在,求出所有符合條件的CP的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線y=ax2+bx+3經(jīng)過(guò)點(diǎn)A(1,0)和點(diǎn)B(﹣3,0),與y軸交于點(diǎn)C,點(diǎn)P為第二象限內(nèi)拋物線上的動(dòng)點(diǎn).
(1)拋物線的解析式為 ,拋物線的頂點(diǎn)坐標(biāo)為 ;
(2)如圖1,連接OP交BC于點(diǎn)D,當(dāng)S△CPD:S△BPD=1:2時(shí),請(qǐng)求出點(diǎn)D的坐標(biāo);
(3)如圖2,點(diǎn)E的坐標(biāo)為(0,﹣1),點(diǎn)G為x軸負(fù)半軸上的一點(diǎn),∠OGE=15°,連接PE,若∠PEG=2∠OGE,請(qǐng)求出點(diǎn)P的坐標(biāo);
(4)如圖3,是否存在點(diǎn)P,使四邊形BOCP的面積為8?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線y=x2﹣2mx+m2﹣1與y軸交于點(diǎn)C.
(1)試用含m的代數(shù)式表示拋物線的頂點(diǎn)坐標(biāo);
(2)將拋物線y=x2﹣2mx+m2﹣1沿直線y=﹣1翻折,得到的新拋物線與y軸交于點(diǎn)D.若m>0,CD=8,求m的值;
(3)已知A(2k,0),B(0,k),在(2)的條件下,當(dāng)線段AB與拋物線y=x2﹣2mx+m2﹣1只有一個(gè)公共點(diǎn)時(shí),直接寫(xiě)出k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:中,是直徑,弦.
如圖1,求證:
如圖2,點(diǎn)在圓上,連接,若,求的值;
如圖3,在的條件下,分別延長(zhǎng)線段交于點(diǎn),過(guò)作于,連接,若,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,D是BC邊上的一點(diǎn),E是AD的中點(diǎn),過(guò)A點(diǎn)作BC的平行線交CE的延長(zhǎng)線于點(diǎn)F,且AF=BD,連接BF.
(1)求證:BD=CD;
(2)不在原圖添加字母和線段,對(duì)△ABC只加一個(gè)條件使得四邊形AFBD是菱形,寫(xiě)出添加條件并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形紙片的邊長(zhǎng)為5,E是邊的中點(diǎn),連接.沿折疊該紙片,使點(diǎn)B落在F點(diǎn).則的長(zhǎng)為______________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形ABCD的頂點(diǎn)A點(diǎn),D點(diǎn)分別在x軸、y軸上,對(duì)角線BD∥x軸,反比例函數(shù)的圖象經(jīng)過(guò)矩形對(duì)角線的交點(diǎn)E,若點(diǎn)A(2,0),D(0,4),則k的值為( )
A.16B.20C.32D.40
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com