【題目】已知點P為某個封閉圖形邊界上的一定點,動點M從點P出發(fā),沿其邊界順時針勻速運動一周,設(shè)點M的運動時間為x,線段PM的長度為y,表示yx的函數(shù)圖象大致如圖所示,則該封閉圖形可能是( 。

A. B. C. D.

【答案】A

【解析】先觀察圖象得到yx的函數(shù)圖象分三個部分,則可對有4邊的封閉圖形進行淘汰,利用圓的定義,P點在圓上運動時,PM總上等于半徑,則可對D進行判斷,從而得到正確選項.

yx的函數(shù)圖象分三個部分,而B選項和C選項中的封閉圖形都有4條線段,其圖象要分四個部分,所以B、C選項不正確;D選項中的封閉圖形為圓,y為定中,所以D選項不正確;A選項為三角形,M點在三邊上運動對應三段圖象,且M點在P點的對邊上運動時,PM的長有最小值.

故選:A.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】一艘漁船從港口A沿北偏東60°方向航行至C處時突然發(fā)生故障,在C處等待救援.有一救援艇位于港口A正東方向20(﹣1)海里的B處,接到求救信號后,立即沿北偏東45°方向以30海里/小時的速度前往C處救援.則救援艇到達C處所用的時間為( 。

A. 小時 B. 小時 C. 小時 D. 小時

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】水果店張阿姨以每千克4元的價格購進某種水果若干千克,然后以每千克6元的價格出售,每天售出100千克.通過調(diào)查發(fā)現(xiàn),這種水果每千克的售價每降低0.1元,每天可多售出20千克,為了保證每天至少售出240千克,張阿姨決定降價銷售.

(1)若售價降低0.8元,則每天的銷售量為   千克、銷售利潤為   元;

(2)若將這種水果每千克降價x元,則每天的銷售量是   千克(用含x的代數(shù)式表示);

(3)銷售這種水果要想每天盈利300元,張阿姨應將每千克的銷售價降至多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明家、食堂,圖書館在同一條直線上,小明從家去食堂吃早餐,接著去圖書館讀報,然后回家,如圖反映了這個過程中,小明離家的距離ykm)與時間xmin)之間的對應關(guān)系,根據(jù)圖象,下列說法正確的是( 。

A.小明吃早餐用了25min

B.食堂到圖書館的距離為0.6km

C.小明讀報用了30min

D.小明從圖書館回家的速度為0.8km/min

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,AC=6,BC=8.動點P從點A開始沿折線AC-CB-BA運動,點P在AC,CB,BA邊上運動的速度分別為每秒3,4,5個單位.直線l從與AC重合的位置開始,以每秒個單位的速度沿CB方向移動,移動過程中保持l∥AC,且分別與CB,AB邊交于E,F(xiàn)兩點,點P與直線l同時出發(fā),設(shè)運動的時間為t秒,當點P第一次回到點A時,點P和直線l同時停止運動.

(1)當t=5秒時,點P走過的路徑長為_________;當t=_________秒時,點P與點E重合;

(2)當點P在AC邊上運動時,連結(jié)PE,并過點E作AB的垂線,垂足為H. 若以C、P、E為頂點的三角形與△EFH相似,試求線段EH的值;

(3)當點P在折線AC-CB-BA上運動時,作點P關(guān)于直線EF的對稱點Q.在運動過程中,若形成的四邊形PEQF為菱形,求t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)畫出函數(shù)的圖象;

2)判斷點是否在函數(shù)的圖象上;

3)若點在函數(shù)的圖象上,求出m的值

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,三孔橋橫截面的三個孔都呈拋物線形,兩小孔形狀、大小都相同.正常水位時,大孔水面寬度米,頂點距水面米(即米),小孔頂點距水面米(即米).當水位上漲剛好淹沒小孔時,借助圖中的直角坐標系,則此時大孔的水面寬度長為(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,一塊RtABC的綠地,量得兩直角邊AC=8cmBC=6cm.現(xiàn)在要將這塊綠地擴充成等腰△ABD,且擴充部分(△ADC)是以8cm為直角邊長的直角三角形,求擴充等腰△ABD的周長.

1)在圖1中,當AB=AD=10cm時,△ABD的周長為

2)在圖2中,當BA=BD=10cm時,△ABD的周長為

3)在圖3中,當DA=DB時,求△ABD的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,弦CDAB于點E,點G在直徑DF的延長線上,∠D=G=30°.

(1)求證:CG是⊙O的切線 (2)若CD=6,求GF的長

查看答案和解析>>

同步練習冊答案