【題目】商場經(jīng)營的某品牌童裝,4月的銷售額為20000元,為擴(kuò)大銷量,5月份商場對這種童裝打9折銷售,結(jié)果銷量增加了50件,銷售額增加了7000元.

(1)求該童裝4月份的銷售單價;

(2)若4月份銷售這種童裝獲利8000元,6月全月商場進(jìn)行“六一”兒童節(jié)促銷活動.童裝在4月售價的基礎(chǔ)上一律打8折銷售,若該童裝的成本不變,則銷量至少為多少件,才能保證6月的利潤比4月的利潤至少增長25%?

【答案】(1)4月份的銷售單價為200元;(2)銷量至少為250件,才能保證6月的利潤比4月的利潤至少增長25%.

【解析】

分析題意,(1)設(shè)4月份的銷售單價為x元.由題意得50,解方程可得;

(2)先求出4、6月份的銷量,設(shè)銷量為y件,由題意得160y120y≥8 000×(125%),解不等式可得.

解:(1)設(shè)4月份的銷售單價為x元.

由題意得50,

解得x200.

經(jīng)檢驗(yàn),x200是原方程的解,且符合題意.

所以4月份的銷售單價為200元.

(2)4月份的銷量為20000÷200100(),則每件衣服的成本為(200008000)÷100120()

6月份的售價為200×0.8160(),

設(shè)銷量為y件,

由題意得160y120y≥8 000×(125%),

解得y≥250

所以銷量至少為250件,才能保證6月的利潤比4月的利潤至少增長25%.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知某山區(qū)的平均氣溫與該山的海拔高度的關(guān)系見下表:

海拔高度(單位:米)

0

100

200

300

400

平均氣溫(單位:℃)

22

21.5

21

20.5

20


(1)若海拔高度用x(米)表示,平均氣溫用y(℃)表示,試寫出y與x之間的函數(shù)關(guān)系式;
(2)若某種植物適宜生長在18℃~20℃(包含18℃,也包含20℃)山區(qū),請問該植物適宜種植在海拔為多少米的山區(qū)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為積極響應(yīng)政府提出的綠色發(fā)展·低碳出行號召,某社區(qū)決定購置一批共享單車.經(jīng)市場調(diào)查得知,購買6輛男式單車與8輛女式單車費(fèi)用相同,購買5輛男式單車與4輛女式單車共需16 000元.

(1)求男式單車和女式單車的單價;

(2)該社區(qū)要求男式單車比女式單車多5輛,兩種單車至少需要22輛,購置兩種單車的費(fèi)用不超過50 000元,該社區(qū)有幾種購置方案?怎樣購置才能使所需總費(fèi)用最低,最低費(fèi)用是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】完善下列解題步驟,并說明解題依據(jù).

如圖,已知,,求證:

證明:(已知),

_____________________),

_____________________),

___________)(________________),

______)(______________________),

(已知),

_______

___________________).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩名工人同時加工同一種零件,現(xiàn)根據(jù)兩人7天產(chǎn)品中每天出現(xiàn)的次品數(shù)情況繪制成如下不完整的統(tǒng)計圖和表,依據(jù)圖、表信息,解答下列問題:

相關(guān)統(tǒng)計量表:

量數(shù)

眾數(shù)

中位數(shù)

平均數(shù)

方差

   

   

2

1

1

1

次品數(shù)量統(tǒng)計表:

天數(shù)

1

2

3

4

5

6

7

2

2

0

3

1

2

4

1

0

2

1

1

0

   

(1)補(bǔ)全圖、表.

(2)判斷誰出現(xiàn)次品的波動。

(3)估計乙加工該種零件30天出現(xiàn)次品多少件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如圖的方式放置,點(diǎn)A1,A2,A3和點(diǎn)C1,C2,C3分別在直線y=x+1x軸上,則點(diǎn)Bn的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,MN是⊙O的切線,B為切點(diǎn),BC是⊙O的弦且∠CBN=45°,過C的直線與⊙O,MN分別交于A,D兩點(diǎn),過C作CE⊥BD于點(diǎn)E.、

(1)求證:CE是⊙O的切線;
(2)若∠D=30°,BD=4,求⊙O的半徑r.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,P是CD邊上一點(diǎn),且AP和BP分別平分∠DAB和∠CBA,若AD=5,AP=8,則△APB的周長是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在平面直角坐標(biāo)系中,已知點(diǎn)A(-5,0),B(5,0),D(2,7).

(1)若點(diǎn)C為AD與y軸的交點(diǎn),求C點(diǎn)的坐標(biāo);【提示:設(shè)C點(diǎn)的坐標(biāo)為(0,x)】

(2)動點(diǎn)PB點(diǎn)出發(fā)以每秒1個單位的速度沿BA方向運(yùn)動,同時動點(diǎn)QC點(diǎn)出發(fā),也以每秒1個單位的速度沿y軸正半軸方向運(yùn)動.(當(dāng)P點(diǎn)運(yùn)動到A點(diǎn)時,兩點(diǎn)都停止運(yùn)動,如圖②所示).設(shè)從出發(fā)起運(yùn)動了x秒.

①請用含x的代數(shù)式分別表示P、Q兩點(diǎn)的坐標(biāo);

②當(dāng)x=2時,y軸上是否存在一點(diǎn)E,使得△AQE的面積與△APQ的面積相等?若存在,求E點(diǎn)的坐標(biāo),若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案