【題目】如圖,△ABC是邊長為3的等邊三角形,將△ABC沿直線BC向右平移,使點(diǎn)B與點(diǎn)C重合,得到△ECD,連接BE,交ACF

1)猜想ACBE的位置關(guān)系,并證明你的結(jié)論;

2)求線段BE的長.

【答案】1ACBE,證明詳見解析;(2BE

【解析】

1)由平移的性質(zhì)可知BD2BC6DEAC3,故可得出BEDE,由∠D=∠ACB60°可知ACDE,故可得出結(jié)論;

2)在RtBDE中利用勾股定理即可得出BE的長.

1ACBE的位置關(guān)系是:ACBE

∵△DCE由△ABC平移而成,

BD2BC6,DEAC3,∠D=∠ACB60°,

DEBD

BEDE,

又∵∠D=∠ACB60°,

ACDE,

BEAC

∵△ABC是等邊三角形,

BF是邊AC的中線,

BEAC,BEAC互相垂直平分;

2)∵由(1)知,ACDE,BEAC

∴△BED是直角三角形,

BD6,DE3,

BE

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:△ABC在坐標(biāo)平面內(nèi),三個頂點(diǎn)的坐標(biāo)為A(0,3)、B(3,4)、C(2,2),(正方形網(wǎng)格中,每個小正方形邊長為1個單位長度)

(1)畫出△ABC向下平移4個單位得到的△A1B1C1

(2)以B為位似中心,在網(wǎng)格中畫出△A2BC2,使△A2BC2與△ABC位似,且位似比2:1,直接寫出C2點(diǎn)坐標(biāo)是   ;

(3)△A2BC2的面積是   平方單位.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰直角△ABC中,∠ACB90°,ACBC4,MAB中點(diǎn),D是射線BC上一動點(diǎn),連接AD,將線段AD繞點(diǎn)A逆時針旋轉(zhuǎn)90°得到線段AE,連接ED、ME,則點(diǎn)D在運(yùn)動過程中ME的最小值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】端午節(jié)“賽龍舟,吃粽子”是中華民族的傳統(tǒng)習(xí)俗.節(jié)日期間,小邱家包了三種不同餡的粽子,分別是:紅棗粽子(記為A),豆沙粽子(記為B),肉粽子(記為C),這些粽子除了餡不同,其余均相同.粽子煮好后,小邱的媽媽給一個白盤中放入了兩個紅棗粽子,一個豆沙粽子和一個肉粽子;給一個花盤中放入了兩個肉粽子,一個紅棗粽子和一個豆沙粽子.

根據(jù)以上情況,請你回答下列問題:

(1)假設(shè)小邱從白盤中隨機(jī)取一個粽子,恰好取到紅棗粽子的概率是多少?

(2)若小邱先從白盤里的四個粽子中隨機(jī)取一個粽子,再從花盤里的四個粽子中隨機(jī)取一個粽子,請用列表法或畫樹狀圖的方法,求小邱取到的兩個粽子中一個是紅棗粽子、一個是豆沙粽子的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將下列各式因式分解

12a3b8ab3

2)﹣x3+x2yxy2

3)(7x2+2y22﹣(2x2+7y22

4)(x2+4x2+x2+4x)﹣6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=﹣x2+bx+cb,c均為常數(shù)的圖象經(jīng)過兩點(diǎn)A(2,0),B(0,﹣6).

(1)求這個二次函數(shù)的解析式;

(2)若點(diǎn)Cm,0)(m>2)在這個二次函數(shù)的圖象上,連接AB,BC求△ABC的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)D與點(diǎn)A(0,6)、B(0,﹣4)、Cx,y)是平行四邊形的四個頂點(diǎn),其中x、y滿3x﹣4y+12=0,則CD的最小值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線l:y=kx和拋物線C:y=ax2+bx+1.

1當(dāng)k=1,b=1時,拋物線C:y=ax2+bx+1的頂點(diǎn)在直線l:y=kx上,求a的值;

2若把直線l向上平移k2+1個單位長度得到直線r,則無論非零實(shí)數(shù)k取何值,直線r與拋物線C都只有一個交點(diǎn);

(i)求此拋物線的解析式;

(ii)P是此拋物線上任一點(diǎn),過點(diǎn)PPQy軸且與直線y=2交于點(diǎn)Q,O為原點(diǎn),

求證:OP=PQ.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BDABC外接圓⊙O的直徑,且∠BAE=C.

(1)求證:AE與⊙O相切于點(diǎn)A;

(2)若AEBC,BC=2,AC=2,求AD的長.

查看答案和解析>>

同步練習(xí)冊答案