【題目】如圖,在中,直徑經(jīng)過弦的中點,點上,的延長線交于于點,交過的直線于,,連接交于點.

1)求證:的切線;

2)若點的中點,的半徑為3,,求的長.

【答案】1)見解析;(2.

【解析】

1)根據(jù)切線的判定定理得出∠1+BDO=90°,即可得出答案;

2)利用已知得出∠3=2,∠4=C,再利用相似三角形的判定方法得出即可;根據(jù)已知得出OE的長,進而利用勾股定理得出ED,ADBD的長,即可得出CD,利用相似三角形的性質(zhì)得出NB的長即可.

1)證明:∵直徑經(jīng)過弦的中點,

.

,

,

,

的切線.

2)解:連接.

直徑,

,

,

,

,

;

的半徑為3,即,

中,,

OE=x,ED=x,

由勾股定理得;OE2+ED2=OD2

解得:

由此可得:,

由勾股定理可得:

,

直徑,

∴由垂徑定理得:,

,

∵點的中點,,

,

.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】在平行四邊形ABCD中,∠A30°AD,BD4,則平行四邊形ABCD的面積等于 ______________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,中,上一點,經(jīng)過點,與相交于點E,與交于點,連接.

(I).如圖,若,,求的長.

(II)如圖,平分,交于點,經(jīng)過點.

①求證:的切線;

②若,,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是王阿姨晚飯后步行的路程s(單位:m)與時間t(單位:min)的函數(shù)圖象,其中曲線段AB是以B為頂點的拋物線一部分.下列說法不正確的是( )

A.25min~50min,王阿姨步行的路程為800m

B.線段CD的函數(shù)解析式為

C.5min~20min,王阿姨步行速度由慢到快

D.曲線段AB的函數(shù)解析式為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校在以“青春心向覺,建功新時代”為主題的校園文化藝術(shù)節(jié)期間,舉辦了合唱,群舞,書法,演講共四個項目的比賽,要求每位學生必須參加且僅參加一項,小紅隨機調(diào)查了部分學生的報名情況,并繪制了下列兩幅不完整的統(tǒng)計圖,請根據(jù)統(tǒng)計圖中信息解答下列問題:

1)本次調(diào)查的學生總?cè)藬?shù)是多少?扇形統(tǒng)計圖中“”部分的圓心角度數(shù)是多少?

2)請將條形統(tǒng)計圖補充完整;

3)若全校共有1800名學生,請估計該校報名參加書法和演講比賽的學生共有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】要在一塊長52m,寬48m的矩形綠地上,修建同樣寬的兩條互相垂直的甬路.下面分別是小亮和小穎的設計方案.

1)求小亮設計方案中甬路的寬度x;

2)求小穎設計方案中四塊綠地的總面積(友情提示:小穎設計方案中的與小亮設計方案中的取值相同)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,是⊙的直徑,弦于點,點是⊙上一點,且,連接,,于點

1)若,,求⊙的半徑;

2)求證:為等腰三角形;

3)連接并延長,交的延長線于點,過點作⊙的切線,交的延長線于點.求證:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知二次函數(shù)的圖象與x軸交于A、B兩點,D為頂點,其中點B的坐標為,點D的坐標為

1)求該二次函數(shù)的表達式;

2)點E是線段BD上的一點,過點Ex軸的垂線,垂足為F,且,求點E的坐標.

3)試問在該二次函數(shù)圖象上是否存在點G,使得的面積是的面積的?若存在,求出點G的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】函數(shù)圖象在探索函數(shù)的性質(zhì)中有非常重要的作用,下面我們就一類特殊的函數(shù)展開探索.畫函數(shù)的圖象,經(jīng)歷分析解析式、列表、描點、連線過程得到函數(shù)圖象如圖所示;經(jīng)歷同樣的過程畫函數(shù)的圖象如圖所示.

x

3

2

1

0

1

2

3

y

6

4

2

0

2

4

6

1)觀察發(fā)現(xiàn):三個函數(shù)的圖象都是由兩條射線組成的軸對稱圖形;三個函數(shù)解折式中絕對值前面的系數(shù)相同,則圖象的開口方向和形狀完全相同,只有最高點和對稱軸發(fā)生了變化.寫出點AB的坐標和函數(shù)的對稱軸.

2)探索思考:平移函數(shù)的圖象可以得到函數(shù)的圖象,分別寫出平移的方向和距離.

3)拓展應用:在所給的平面直角坐標系內(nèi)畫出函數(shù)的圖象.若點在該函數(shù)圖象上,且,比較,的大。

查看答案和解析>>

同步練習冊答案