【題目】如圖,AB是圓O的直徑,O為圓心,AD、BD是半圓的弦,且∠PDA=∠PBD.延長(zhǎng)PD交圓的切線BE于點(diǎn)E.
(1)證明:直線PD是⊙O的切線;
(2)如果∠BED=60°,PD=,求PA的長(zhǎng);
(3)將線段PD以直線AD為對(duì)稱軸作對(duì)稱線段DF,點(diǎn)F正好在圓O上,如圖2,求證:四邊形DFBE為菱形.
【答案】(1)見解析;(2)1;(3)見解析
【解析】
(1)連接OD,由AB是圓O的直徑可得∠ADB=90°,再利用角度的相互轉(zhuǎn)換求得∠ADO+∠PDA=90°,即可得出直線PD為⊙O的切線;
(2)求出∠P=30°,解直角三角形求出OD,結(jié)合勾股定理可得出PO,最后根據(jù)PA=PO-AO可得出結(jié)果;
(3)根據(jù)折疊和已知求出∠P=∠PBF,根據(jù)平行線的判定推出DE∥BF,求出DF⊥AB,BE⊥AB,推出DF∥BE,求出ED=EB,根據(jù)菱形的判定推出即可.
(1)證明:如圖1,連接OD,
∵AB是圓O的直徑,∴∠ADB=90°,
∴∠ADO+∠BDO=90°,
又∵DO=BO,∴∠BDO=∠PBD,
∵∠PDA=∠PBD,∴∠BDO=∠PDA,
∴∠ADO+∠PDA=90°,即PD⊥OD,
∵點(diǎn)D在⊙O上,
∴直線PD為⊙O的切線.
(2)解:∵BE是⊙O的切線,∴∠EBA=90°,
∵∠BED=60°,∴∠P=30°,
∵PD為⊙O的切線,∴∠PDO=90°,
在Rt△PDO中,∠P=30°,PD=,
∴,解得OD=1,
∴,
∴PA=PO﹣AO=2﹣1=1.
(3)證明:如圖2中,依題意得:∠ADF=∠PDA,∠APD=∠AFD,
∵∠PDA=∠PBD,∠ADF=∠ABF,∠AFD=∠PBD,
∴∠ADF=∠AFD=∠APD=∠ABF,
∴AD=AF,BF∥PD,即BF∥DE.
又∠DAB+∠DBA=90°,∴∠DAB+∠ADF=90°,
∴DF⊥PB.
∵BE為切線,
∴BE⊥PB,
∴DF∥BE,
∴四邊形DFBE為平行四邊形,
∵PE、BE為切線,
∴BE=DE,
∴四邊形DFBE為菱形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校七年級(jí)甲班、乙班舉行一分鐘投籃比賽,每班派10名學(xué)生參賽,在規(guī)定時(shí)間內(nèi)進(jìn)球數(shù)不少于8個(gè)為優(yōu)秀學(xué)生.比賽數(shù)據(jù)的統(tǒng)計(jì)圖表如下(數(shù)據(jù)不完整):
根據(jù)以上信息,解答下列問題:
(1)直接寫出a,b,c的值.
(2)你認(rèn)為哪個(gè)班的比賽成績(jī)要好一些?請(qǐng)簡(jiǎn)要說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,AC為直徑,AC和BD交于點(diǎn)E,AB=BC.
(1)求∠ADB的度數(shù);
(2)過B作AD的平行線,交AC于F,試判斷線段EA,CF,EF之間滿足的等量關(guān)系,并說明理由;
(3)在(2)條件下過E,F分別作AB,BC的垂線,垂足分別為G,H,連接GH,交BO于M,若AG=3,S四邊形AGMO:S四邊形CHMO=8:9,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,菱形ABCD在第一象限內(nèi),邊BC與x軸平行,A,B兩點(diǎn)的縱坐標(biāo)分別為4,2,反比例函數(shù)y=(x>0)的圖象經(jīng)過A,B兩點(diǎn),若菱形ABCD的面積為2,則k的值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角三角形ABC中,∠C=90°,AC=BC,E是AB的中點(diǎn),過點(diǎn)E作AC和BC的垂線,垂足分別為點(diǎn)D和點(diǎn)F,四邊形CDEF沿著CA方向勻速運(yùn)動(dòng),點(diǎn)C與點(diǎn)A重合時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t,運(yùn)動(dòng)過程中四邊形CDEF與△ABC的重疊部分面積為S.則S關(guān)于t的函數(shù)圖象大致為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】水果店購(gòu)進(jìn)某種水果的成本為10元/千克,經(jīng)市場(chǎng)調(diào)研,獲得銷售單價(jià)p(元/千克)與銷售時(shí)間t(1≤t≤15,t為整數(shù))(天)之間的部分?jǐn)?shù)據(jù)如下表:
銷售時(shí)間t(1≤t≤15,t為整數(shù))(天) | 1 | 4 | 5 | 8 | 12 |
銷售單價(jià)p(元/千克) | 20.25 | 21 | 21.25 | 22 | 23 |
已知p與t之間的變化規(guī)律符合一次函數(shù)關(guān)系.
(1)試求p關(guān)于t的函數(shù)表達(dá)式;
(2)若該水果的日銷量y(千克)與銷售時(shí)間t(天)的關(guān)系滿足一次函數(shù)y=-2t+120(1≤t≤15,t為整數(shù)).
① 求銷售過程中最大日銷售利潤(rùn)為多少?
② 在實(shí)際銷售的前12天中,公司決定每銷售1千克水果就捐贈(zèng)n元利潤(rùn)(n<3)給“精準(zhǔn)扶貧”對(duì)象.現(xiàn)發(fā)現(xiàn):在前12天中,每天扣除捐贈(zèng)后的日銷售利潤(rùn)隨時(shí)間t的增大而增大,求n的取值范圍
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)C是弧BE中點(diǎn),AE⊥CD于點(diǎn)D,延長(zhǎng)DC,AB交于點(diǎn)F,已知AD=4,FC=FB.
(1)求證:CD是⊙O的切線.
(2)求線段FC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在讀書月活動(dòng)中,學(xué)校準(zhǔn)備購(gòu)買一批課外讀物.為使課外讀物滿足同學(xué)們的需求,學(xué)校就“我最喜愛的課外讀物”從文學(xué)、藝術(shù)、科普和其他四個(gè)類別進(jìn)行了抽樣調(diào)查(每位同學(xué)只選一類),如圖是根
據(jù)調(diào)查結(jié)果繪制的兩幅不完整的統(tǒng)計(jì)圖.
請(qǐng)你根據(jù)統(tǒng)計(jì)圖提供的信息,解答下列問題:
(1)本次調(diào)查中,一共調(diào)查了 名同學(xué);
(2)條形統(tǒng)計(jì)圖中,m= ,n= ;
(3)扇形統(tǒng)計(jì)圖中,藝術(shù)類讀物所在扇形的圓心角是 度;
(4)學(xué)校計(jì)劃購(gòu)買課外讀物6000冊(cè),請(qǐng)根據(jù)樣本數(shù)據(jù),估計(jì)學(xué)校購(gòu)買其他類讀物多少冊(cè)比較合理?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,函數(shù)y=x(x≥0)的圖象與反比例函數(shù)y=的圖象交于點(diǎn)A,若點(diǎn)A繞點(diǎn)B(,0)順時(shí)針旋轉(zhuǎn)90°后,得到的點(diǎn)A'仍在y=的圖象上,則點(diǎn)A的坐標(biāo)為_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com