【題目】如圖,四邊形ABCD為菱形,以AD為直徑作⊙O交AB于點(diǎn)F,連接DB交⊙O于點(diǎn)H,E是BC上的一點(diǎn),且BE=BF,連接DE.
(1)求證:△DAF≌△DCE.
(2)求證:DE是⊙O的切線.
(3)若BF=2,DH=,求四邊形ABCD的面積.
【答案】(1)證明見解析;(2)證明見解析;(3)20.
【解析】
(1)連接DF,結(jié)合菱形的性質(zhì)利用SAS可證△DAF≌△DCE;
(2)由直徑所對(duì)的圓周角是直角可知∠DFA=90°,由全等的性質(zhì)與平行的性質(zhì)可得∠ADE=90°,根據(jù)切線的判定定理可得結(jié)論;
(3)連接AH,由等腰三角形三線合一的性質(zhì)可得DB=2DH,根據(jù)勾股定理可得AD、AF、DF長,易得四邊形ABCD的面積.
(1)證明:如圖,連接DF,
∵四邊形ABCD為菱形,
∴AB=BC=CD=DA,AD∥BC,∠DAB=∠C,
∵BF=BE,
∴AB﹣BF=BC﹣BE,
即AF=CE,
∴△DAF≌△DCE(SAS);
(2)由(1)知,△DAF≌△DCE,則∠DFA=∠DEC.
∵AD是⊙O的直徑,
∴∠DFA=90°,∴∠DEC=90°
∵AD∥BC,
∴∠ADE=∠DEC=90°,
∴OD⊥DE,
∵OD是⊙O的半徑,
∴DE是⊙O的切線;
(3)解:如圖,連接AH,
∵AD是⊙O的直徑,
∴∠AHD=∠DFA=90°,
∴∠DFB=90°,
∵AD=AB,DH=,
∴DB=2DH=2,
在Rt△ADF和Rt△BDF中,
∵DF2=AD2﹣AF2,DF2=BD2﹣BF2,
∴AD2﹣AF2=DB2﹣BF2,
∴AD2﹣(AD﹣BF)2=DB2﹣BF2,
∴AD2﹣(AD﹣2)2=(2)2﹣22,
∴AD=5.
∴AH===2,
∴S四邊形ABCD=2S△ABD=2×AH=BDAH=2×2=20.即四邊形ABCD的面積是20,
故答案為:20.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD中,點(diǎn)P是CD的中點(diǎn),∠BCD=60°,射線AP交BC的延長線于點(diǎn)E,射線BP交DE于點(diǎn)K,點(diǎn)O是線段BK的中點(diǎn),作BM⊥AE于點(diǎn)M,作KN⊥AE于點(diǎn)N,連結(jié)MO、NO,以下四個(gè)結(jié)論:①△OMN是等腰三角形;②tan∠OMN=;③BP=4PK;④PMPA=3PD2,其中正確的是( 。
A.①②③B.①②④C.①③④D.②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】太陽能光伏發(fā)電因其清潔、安全、便利、高效等特點(diǎn),已成為世界各國普遍關(guān)注和重點(diǎn)發(fā)展的新興產(chǎn)業(yè),如圖是太陽能電池板支撐架的截面圖,其中的粗線表示支撐角鋼,太陽能電池板與支撐角鋼AB的長度相同,均為300cm,AB的傾斜角為,BE=CA=50cm,支撐角鋼CD,EF與底座地基臺(tái)面接觸點(diǎn)分別為D,F(xiàn),CD垂直于地面,于點(diǎn)E.兩個(gè)底座地基高度相同(即點(diǎn)D,F(xiàn)到地面的垂直距離相同),均為30cm,點(diǎn)A到地面的垂直距離為50cm,求支撐角鋼CD和EF的長度各是多少cm(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,我們把以拋物線上的動(dòng)點(diǎn)A為頂點(diǎn)的拋物線叫做這條拋物線的“子拋物線”.如圖,已知某條“子拋物線”的二次項(xiàng)系數(shù)為,且與y軸交于點(diǎn)C.設(shè)點(diǎn)A的橫坐標(biāo)為m(m>0),過點(diǎn)A作y軸的垂線交y軸于點(diǎn)B.
(1)當(dāng)m=1時(shí),求這條“子拋物線”的解析式;
(2)用含m的代數(shù)式表示∠ACB的余切值;
(3)如果∠OAC=135°,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC三個(gè)頂點(diǎn)都在格點(diǎn)上,點(diǎn)A,B,C的坐標(biāo)分別為A(﹣2,3),B(﹣3,1),C(0,1)請(qǐng)解答下列問題:
(1)△ABC與△A1B1C1關(guān)于原點(diǎn)O成中心對(duì)稱,畫出△A1B1C1并直接寫出點(diǎn)A的對(duì)應(yīng)點(diǎn)A1的坐標(biāo);
(2)畫出△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°后得到的△A2B2C,并求出線段AC旋轉(zhuǎn)時(shí)掃過的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)(問題發(fā)現(xiàn))如圖1,和均為等邊三角形,點(diǎn),,在同一條直線上.填空:①線段,之間的數(shù)量關(guān)系為______;②_____°.
(2)(類比探究)如圖2,和均為等腰直角三角形,,,,點(diǎn),,在同一條直線上,請(qǐng)判斷線段,之間的數(shù)量關(guān)系及的度數(shù),并給出證明.
(3)(解決問題)如圖3,在中,,,,點(diǎn)在邊上,于點(diǎn),,將繞點(diǎn)旋轉(zhuǎn),當(dāng)所在直線經(jīng)過點(diǎn)時(shí),的長是多少?(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)設(shè)計(jì)了一款工藝品,每件的成本是50元,為了合理定價(jià),投放市場(chǎng)進(jìn)行試銷.據(jù)市場(chǎng)調(diào)查,銷售單價(jià)是100元時(shí),每天的銷售量是50件,而銷售單價(jià)每降低1元,每天就可多售出5件,但要求銷售單價(jià)不得低于成本.
求出每天的銷售利潤元與銷售單價(jià)元之間的函數(shù)關(guān)系式;
求出銷售單價(jià)為多少元時(shí),每天的銷售利潤最大?最大利潤是多少?
如果該企業(yè)要使每天的銷售利潤不低于4000元,且每天的總成本不超過7000元,那么銷售單價(jià)應(yīng)控制在什么范圍內(nèi)?每天的總成本每件的成本每天的銷售量
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,一次函數(shù)y=2x+b的圖象與x軸的交點(diǎn)為A(2,0),與y軸的交點(diǎn)為B,直線AB與反比例函數(shù)y=的圖象交于點(diǎn)C(﹣1,m).
(1)求一次函數(shù)和反比例函數(shù)的表達(dá)式;
(2)直接寫出關(guān)于x的不等式2x+b>的解集;
(3)點(diǎn)P是這個(gè)反比例函數(shù)圖象上的點(diǎn),過點(diǎn)P作PM⊥x軸,垂足為點(diǎn)M,連接OP,BM,當(dāng)S△ABM=2S△OMP時(shí),求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】近年來網(wǎng)約車十分流行,初三某班學(xué)生對(duì)“美團(tuán)”和“滴滴”兩家網(wǎng)約車公司各10名司機(jī)月收入進(jìn)行了一項(xiàng)抽樣調(diào)查,司機(jī)月收入(單位:千元)如圖所示:
根據(jù)以上信息,整理分析數(shù)據(jù)如下:
平均月收/千元 | 中位數(shù)/千元 | 眾數(shù)/千元 | 方差/千元 | |
“美團(tuán)” | ① | 6 | 6 | 1.2 |
“滴滴” | 6 | ② | 4 | ③ |
(1)完成表格填空:①__________②__________③__________
(2)若從兩家公司中選擇一家做網(wǎng)約車司機(jī),你會(huì)選哪家公司,并說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com