【題目】如圖,已知△ABC是邊長為2的等邊三角形,點D在邊BC上,將△ABD沿著直線AD翻折,點B落在點B1處,如果B1D⊥AC,那么BD= .
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,點D,E,F(xiàn)分別在AB,BC,AC上,且∠ADF+∠DEC=180°,∠AFE=∠BDE.
(1)如圖1,當(dāng)DE=DF時,圖1中是否存在與AB相等的線段?若存在,請找出,并加以證明;若不存在,說明理由;
(2)如圖2,當(dāng)DE=kDF(其中0<k<1)時,若∠A=90°,AF=m,求BD的長(用含k,m的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC各頂點的坐標(biāo)分別是A(﹣2,﹣4),B(0,﹣4),C(1,﹣1).
(1)在圖中畫出△ABC關(guān)于原點對稱的△AB1C1;
(2)在圖中畫出△ABC繞原點C逆時針旋轉(zhuǎn)90°后的△A2B2C2;
(3)在(2)的條件下,AC邊掃過的面積是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在四邊形ABCD中,AB∥CD,對角線AC、BD交于點E,點F在邊AB上,連接CF交線段BE于點G,CG2=GEGD.
(1)求證:∠ACF=∠ABD;
(2)連接EF,求證:EFCG=EGCB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在四邊形ABCD中,∠BAD=∠CDA,AB=DC= ,CE=a,AC=b,求證:
(1)△DEC∽△ADC;
(2)AEAB=BCDE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在四邊形ABCD中,AD∥BC,E為邊CB延長線上一點,聯(lián)結(jié)DE交邊AB于點F,聯(lián)結(jié)AC交DE于點G,且 = .
(1)求證:AB∥CD;
(2)如果AD2=DGDE,求證: = .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx+4與x軸的正半軸相交于點A,與y軸相交于點B,點C在線段OA上,點D在此拋物線上,CD⊥x軸,且∠DCB=∠DAB,AB與CD相交于點E.
(1)求證:△BDE∽△CAE;
(2)已知OC=2,tan∠DAC=3,求此拋物線的表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖①,在平面直角坐標(biāo)系xOy中,A(0,5),C( ,0),AOCD為矩形,AE垂直于對角線OD于E,點F是點E關(guān)于y軸的對稱點,連AF、OF.
(1)求AF和OF的長;
(2)如圖②,將△OAF繞點O順時針旋轉(zhuǎn)一個角α(0°<α<180°),記旋轉(zhuǎn)中的△OAF為△OA′F′,在旋轉(zhuǎn)過程中,設(shè)A′F′所在的直線與線段AD交于點P,與線段OD交于點Q,是否存在這樣的P、Q兩點,使△DPQ為等腰三角形?若存在,求出此時點P坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:正方形ABCD的邊長為4cm,點E從點A出發(fā)沿AD方向以1cm/秒的速度運動,與此同時,點F也從點D出發(fā)沿DC方向相同的速度運動,記運動的時間為t(0≤t≤4),AF與BE交于P點.
(1)如圖,在運動過程中,AF與BE相等嗎?請說明理由.
(2)在運動過程中,要使得△BPC是等腰三角形,t應(yīng)為何值?請畫出圖形,并求出所有滿足條件的t值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com