【題目】如圖1,在平面直角坐標系中,直線AB與x軸交于點A(m,0),與y軸交于點B(0,n),且m,n滿足:(m+n)2+|n﹣6|=0.
(1)求:①m,n的值;②S△ABO的值;
(2)D為OA延長線上一動點,以BD為直角邊作等腰直角△BDE,連接EA,求直線EA與y軸交點F的坐標.
(3)如圖2,點E為y軸正半軸上一點,且∠OAE=30°,AF平分∠OAE,點M是射線AF上一動點,點N是線段OA上一動點,試求OM+MN的最小值(圖1與圖2中點A的坐標相同).
【答案】(1)①m=﹣6,n=6,②18;(2)F(0,﹣6);(3)OM+MN的最小值為3.
【解析】
(1)①利用非負數(shù)的性質(zhì)即可解決問題.
②先確定出OA=OB=6,從而求得△ABO的面積.
(2)先判斷出△DEM≌△BDO得出EM=DO,MD=OB=OA=6,進而判斷出AM=EM,即可得出∠OAF=45°,即可得出點F坐標,最后用待定系數(shù)法得出直線EA解析式.
(3)過點O作OG⊥AE于G,交AF于M,作MN⊥OA于N,連接MN,此時OM+MN的值最。
(1)①∵(m+n)2+|n﹣6|=0,
又∵(m+n)2≥0,|n﹣6|≥0.
∴m+n=0,n=6,
∴m=﹣6,n=6.
②∵直線AB與x軸交于點A(﹣6,0),與y軸交于B(0,6).
∴OA=6,OB=6,
∴S△ABO=OAOB=×6×6=18;
(2)如圖1,過點E作EM⊥x軸于M,
∴∠MDE+∠DEM=90°,
∵△BDE是等腰直角三角形,
∴DE=DB,∠BDE=90°,
∴∠MDE+∠BDO=90°,
∴∠DEM=∠BDO,
在△DEM和△BDO中,
,
∴△DEM≌△BDO(AAS),
∴EM=DO,MD=OB=OA=6,
∴AM=DM+AD=6+AD,
EM=OD=OA+AD=6+AD,
∴EM=AM,
∴∠MAE=45°=∠OAF,
∴OA=OF,
∴F(0,﹣6).
(3)如圖2中,
過點O作OG⊥AE于G,交AF于M,作MN⊥OA于N,連接MN,此時OM+MN的值最。
∵∠MAG=∠MAN,MG⊥AG,MN⊥AN,
∴MG=MN,
∴OM+MN=OM+MG=OG,
在Rt△OAG中,∠OAE=30°,OA=6,
∴OG=3,
∴OM+MN的最小值為3.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次研究性學(xué)習(xí)活動中,同學(xué)們看到了工人師傅在木板上畫一個直角三角形的過程(如圖所示):畫線段AB,過點A任作一條直線l,以點A為圓心,以AB長為半徑畫弧,與直線l相交于兩點C、D,連接BC和BD.則△BCD就是直角三角形.
(1)請你說明△BCD是直角三角形的道理;
(2)請利用上述方法作一個直角三角形,使其中一個銳角為60°(不寫作法,保留作圖
痕跡,在圖中注明60°的角).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在梯形ABCD中,AD∥BC(BC>AD),∠D=90°,BC=CD=12,∠ABE=45°,若AE=10.求CE的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2的圖象與一次函數(shù)y=mx+4的圖象相交于點A(-2,2)和B(n,8)兩點.
(1)求二次函數(shù)y=ax2與一次函數(shù)y=mx+4的表達式;
(2)試判斷△AOB的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標系中,A(-2,1),B(-3,4),C(-1,3),過點(l,0)作x軸的垂線.
(1)作出△ABC關(guān)于直線的軸對稱圖形△;
(2)直接寫出A1(___,___),B1(___,___),C1(___,___);
(3)在△ABC內(nèi)有一點P(m,n),則點P關(guān)于直線的對稱點P1的坐標為(___,___)(結(jié)果用含m,n的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】三條邊都相等的三角形叫做等邊三角形,它的三個角都是60°.△ABC是等邊三角形,點D在BC所在直線上運動,連接AD,在AD所在直線的右側(cè)作∠DAE=60°,交△ABC的外角∠ACF的角平分線所在直線于點E.
(1)如圖1,當點D在線段BC上時,請你猜想AD與AE的大小關(guān)系,并給出證明;
(2)如圖2,當點D在線段BC的反向延長線上時,依據(jù)題意補全圖形,請問上述結(jié)論還成立嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店購買60件A商品和30件B商品共用了1080元,購買50件A商品和20件B商品共用了880元.
(1)A、B兩種商品的單價分別是多少元?
(2)已知該商店購買B商品的件數(shù)比購買A商品的件數(shù)的2倍少4件,如果需要購買A、B兩種商品的總件數(shù)不少于32件,且該商店購買的A、B兩種商品的總費用不超過296元,那么該商店有哪幾種購買方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(11·湖州)(本小題10分)
如圖,已知E、F分別是□ABCD的邊BC、AD上的點,且BE=DF。
⑴求證:四邊形AECF是平行四邊形;
⑵若BC=10,∠BAC=90°,且四邊形AECF是菱形,求BE的長。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰三角形ABC的底邊BC長為4,面積是16,腰AC的垂直平分線EF分別交AC,AB邊于E,F點若點D為BC邊的中點,點M為線段EF上一動點,則周長的最小值為
A. 6 B. 8 C. 10 D. 12
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com