【題目】如圖,每個小正方形的邊長都是1,
(1)求四邊形ABCD的周長和面積
(2)∠BCD是直角嗎?
【答案】(1) ,14.5 (2)是
【解析】試題分析:(1)直接利用勾股定理得出各邊長,進(jìn)而利用四邊形所在矩形面積減去周圍三角形面積得出答案;
(2)利用勾股定理的逆定理得出答案.
【解答】解:(1)由勾股定理可得:AB2=12+52=26,
則AB=,
∵BC2=42+22=20,
∴BC=2,
∵CD2=22+12=5,
∴CD=,
∵AD2=42+12=17,
∴AD=,
故四邊形ABCD的周長為:
四邊形ABCD的面積為:5×5-(1×5+4×2+2×1+4×1)-1=14.5;
(2)是,由(1)得:BC2=20,CD2=5,而BD2=32+42=25,
故DC2+BC2=BD2,
則∠BCD=90°.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】居民區(qū)內(nèi)的“廣場舞”引起媒體關(guān)注,遼寧都市頻道為此進(jìn)行過專訪報道.小平想了解本小區(qū)居民對“廣場舞”的看法,進(jìn)行了一次抽樣調(diào)查,把居民對“廣場舞”的看法分為四個層次:A.非常贊同;B.贊同但要有時間限制;C.無所謂;D.不贊同.并將調(diào)查結(jié)果繪制了圖1和圖2兩幅不完整的統(tǒng)計圖.
請你根據(jù)圖中提供的信息解答下列問題:
(1)求本次被抽查的居民有多少人?
(2)將圖1和圖2補(bǔ)充完整;
(3)求圖2中“C”層次所在扇形的圓心角的度數(shù);
(4)估計該小區(qū)4000名居民中對“廣場舞”的看法表示贊同(包括A層次和B層次)的大約有多少人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象與反比例函數(shù)的圖象交于第一、三象限內(nèi)的、兩點(diǎn),與軸交于點(diǎn),點(diǎn)的坐標(biāo)為,.
(1)求該反比例函數(shù)和一次函數(shù)的解析式,并寫出使成立的的取值范圍;
(2)若是直線上一點(diǎn),使得,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:若,求的值.
解:∵,∴,
,∴,,∴.
根據(jù)你的觀察,探究下面的問題:
(1)已知,求的值;
(2)已知△ABC的三邊長,且滿足,求c的取值范圍;
(3)已知,,比較的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知矩形,,,是上一動點(diǎn),、、分別是、、的中點(diǎn).
(1)求證:四邊形是平行四邊形;
(2)當(dāng)為何值時,四邊形是菱形,說明理由.
(3)四邊形有可能是矩形嗎?若有可能,求出的長;若不可能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,于點(diǎn)D,點(diǎn)E是直線AC上一動點(diǎn),連接DE,過點(diǎn)D作,交直線BC于點(diǎn)F.
探究發(fā)現(xiàn):
如圖1,若,點(diǎn)E在線段AC上,則______;
數(shù)學(xué)思考:
如圖2,若點(diǎn)E在線段AC上,則______用含m,n的代數(shù)式表示;
當(dāng)點(diǎn)E在直線AC上運(yùn)動時,中的結(jié)論是否任然成立?請僅就圖3的情形給出證明;
拓展應(yīng)用:若,,,請直接寫出CE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,已知點(diǎn)且為軸上點(diǎn)右側(cè)的動點(diǎn),以為腰作等腰,使直線交軸于點(diǎn).
(1)求證:;
(2)求證:;
(3)當(dāng)點(diǎn)運(yùn)動時,點(diǎn)在軸上的位置是否發(fā)生改變,為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A在第一象限,⊙A與x軸交于B(2,0)、C(8,0)兩點(diǎn),與y軸相切于點(diǎn)D,則點(diǎn)A的坐標(biāo)是( 。
A. (5,4) B. (4,5) C. (5,3) D. (3,5)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:至少有一組對邊相等的四邊形為“等對邊四邊形”.
(1)請寫出一個你學(xué)過的特殊四邊形中是“等對邊四邊形”的名稱;
(2)如圖1,四邊形ABCD是“等對邊四邊形”,其中AB=CD,邊BA與CD的延長線交于點(diǎn)M,點(diǎn)E、F是對角線AC、BD的中點(diǎn),若∠M=60°,求證:EFAB;
(3)如圖2.在△ABC中,點(diǎn)D、E分別在邊AC、AB上,且滿足∠DBC=∠ECB∠A,線段CE、BD交于點(diǎn).
①求證:∠BDC=∠AEC;
②請在圖中找到一個“等對邊四邊形”,并給出證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com