【題目】如圖,在等邊三角形ABC中,AB=2,動點(diǎn)D從B開始沿BC向點(diǎn)C運(yùn)動,到達(dá)點(diǎn)C后停止運(yùn)動,將△ABD繞點(diǎn)A旋轉(zhuǎn)后得到△ACE,則下列說法中,正確的是( 。
①DE的最小值為1;②ADCE的面積是不變的;③在整個運(yùn)動過程中,點(diǎn)E運(yùn)動的路程為2;④在整個運(yùn)動過程中,△ADE的周長先變小后變大.
A. ①③④ B. ①②③ C. ②③④ D. ①②④
【答案】C
【解析】
根據(jù)旋轉(zhuǎn)的性質(zhì)易證△ADE為等邊三角形,可得DE=AD,當(dāng)AD⊥BC時,AD最小,由此求得AD=,即可判定①錯誤;由旋轉(zhuǎn)的性質(zhì)可得△ABD的面積=△ACE的面積,即可得DCE的面積=等邊三角形ABC的面積,由此判斷②正確;由題意可得點(diǎn)E運(yùn)動的路程等于等邊三角形的邊長即為2,即可判定③正確;在整個運(yùn)動過程中,AD先變小,在變大,由(1)可知△ADE為等邊三角形,即可得△ADE的周長先變小后變大,即可得④正確.
當(dāng)BD=DC時,DE有最小值,
∵△ABC為等邊三角形,
∴AB=BC=2,∠B=∠BAC=60°,
∵D是BC的中點(diǎn),即BD=DC=BC=1,
∴AD⊥BC,∠BAD=30°,
∴AD=BD=,
∵△ABD繞點(diǎn)A旋轉(zhuǎn)后得到△ACE,
∴∠DAE=∠BAC=60°,AD=AE,
∴△ADE為等邊三角形,
∴DE=AD=,
故①錯誤;
∵將△ABD繞點(diǎn)A旋轉(zhuǎn)后得到△ACE,
∴△ABD的面積=△ACE的面積,
∴ADCE的面積=等邊三角形ABC的面積,
故②正確;
在整個運(yùn)動過程中,點(diǎn)E運(yùn)動的路程等于等邊三角形的邊長即為2,
故③正確;
在整個運(yùn)動過程中,△ADE的周長先變小后變大,④正確;
故選C.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖△ABC三個頂點(diǎn)的坐標(biāo)分別為A(0,﹣3)、B(3,﹣2)、C(2,﹣4),正方形網(wǎng)格中,每個小正方形的邊長是1個單位長度.
(1)畫出△ABC向上平移6個單位得到的△A1B1C1;
(2)以點(diǎn)C為位似中心,在網(wǎng)格中畫出△A2B2C2 , 使△A2B2C2與△ABC位似,且△A2B2C2與△ABC的位似比為2:1,并直接寫出點(diǎn)A2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校隨機(jī)抽查了10名參加2016年云南省初中學(xué)業(yè)水平考試學(xué)生的體育成績,得到的結(jié)果如表:
成績(分) | 46 | 47 | 48 | 49 | 50 |
人數(shù)(人) | 1 | 2 | 1 | 2 | 4 |
下列說法正確的是( )
A.這10名同學(xué)的體育成績的眾數(shù)為50
B.這10名同學(xué)的體育成績的中位數(shù)為48
C.這10名同學(xué)的體育成績的方差為50
D.這10名同學(xué)的體育成績的平均數(shù)為48
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】草莓是云南多地盛產(chǎn)的一種水果,今年某水果銷售店在草莓銷售旺季,試銷售成本為每千克20元的草莓,規(guī)定試銷期間銷售單價不低于成本單價,也不高于每千克40元,經(jīng)試銷發(fā)現(xiàn),銷售量y(千克)與銷售單價x(元)符合一次函數(shù)關(guān)系,如圖是y與x的函數(shù)關(guān)系圖象.
(1)求y與x的函數(shù)解析式(也稱關(guān)系式)
(2)設(shè)該水果銷售店試銷草莓獲得的利潤為W元,求W的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知實(shí)數(shù)+1的整數(shù)部分為m,小數(shù)部分為n.
(1)求m,n的值;
(2)在平面直角坐標(biāo)系中,試判斷點(diǎn)(m﹣1,n﹣1)位于第幾象限;
(3)若m,n+1為一個直角三角形的斜邊與一條直角邊的長,求這個直角三角形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,方格紙中的每個小方格都是正方形,△ABC的頂點(diǎn)均在格點(diǎn)上,建立平面直角坐標(biāo)系.
(1)以原點(diǎn)O為對稱中心,畫出與△ABC關(guān)于原點(diǎn)O對稱的△A1B1C1 , A1的坐標(biāo)是
(2)將原來的△ABC繞著點(diǎn)(﹣2,1)順時針旋轉(zhuǎn)90°得到△A2B2C2 , 試在圖上畫出△A2B2C2的圖形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣ x2+bx+c與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,拋物線的對稱軸交x軸于點(diǎn)D,已知A(﹣1,0),C(0,2).
(1)求拋物線的解析式;
(2)在拋物線的對稱軸上是否存在點(diǎn)P,使△PCD是以CD為腰的等腰三角形?如果存在,直接寫出P點(diǎn)的坐標(biāo);如果不存在,請說明理由;
(3)點(diǎn)E時線段BC上的一個動點(diǎn),過點(diǎn)E作x軸的垂線與拋物線相交于點(diǎn)F,當(dāng)點(diǎn)E運(yùn)動到什么位置時,△CBF的面積最大?求出△CBF的最大面積及此時E點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c與x軸相交于A,B兩點(diǎn),與y軸相交于點(diǎn)C(0,3),點(diǎn)B坐標(biāo)是(3,0),設(shè)拋物線的頂點(diǎn)為點(diǎn)D.
(1)求此拋物線的解析式與對稱軸;
(2)作直線BC,與拋物線的對稱軸交于點(diǎn)E,點(diǎn)P為直線BC上方的二次函數(shù)上一個動點(diǎn)(且點(diǎn)P與點(diǎn)B,C不重合),過點(diǎn)P作PF∥DE交直線BC于點(diǎn)F,設(shè)點(diǎn)P的橫坐標(biāo)為m;
①用含m的代數(shù)式表示線段PF的長,并求出當(dāng)m為何值時,四邊形PDEF為平行四邊形?
②設(shè)△PBC的面積為S,求S與m的函數(shù)關(guān)系式.S是否存在最大值?若存在,求出最大值并求出此時P點(diǎn)坐標(biāo),若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,長方形MNPO的邊OM在x軸上,邊OP在y軸上,點(diǎn)N的坐標(biāo)為(3,9),將矩形沿對角線PM翻折,N點(diǎn)落在F點(diǎn)的位置,且FM交y軸于點(diǎn)E,那么點(diǎn)F的坐標(biāo)為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com