【題目】已知∠AOB100°,∠COD40°OE,OF分別平分∠AOD,∠BOD.

(1)如圖1,當(dāng)OAOC重合時(shí),求∠EOF的度數(shù);

(2)若將∠COD的從圖1的位置繞點(diǎn)O順時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)角∠AOCα,且α90°.

①如圖2,試判斷∠BOF與∠COE之間滿足的數(shù)量關(guān)系并說(shuō)明理由.

②在∠COD旋轉(zhuǎn)過(guò)程中,請(qǐng)直接寫出∠BOE,∠COF,∠AOC之間的數(shù)量關(guān)系.

【答案】(1)EOF=50°(2)①∠BOF+COE90°;理由見(jiàn)解析;②∠COF+AOC﹣∠BOE30°.

【解析】

(1)由題意得出∠AOD∠COD40°,∠BOD∠AOB+∠COD140°,由角平分線定義得出∠EOD∠AOD20°,∠DOF∠BOD70°,即可得出答案;

(2)①由角平分線定義得出∠EOD∠AOE∠AOD20°+α,∠BOF∠BOD70°+α,求出∠COE∠AOE∠AOC20°α,即可得出答案;

∠EOD∠AOE20°+α,∠DOF∠BOF70°+α

當(dāng)∠AOC40°時(shí),求出∠COF∠DOF∠COD30°+α,∠BOE∠BOD∠EOD∠AOB+∠COD+α∠EOD120°+α,即可得出答案;

當(dāng)40°∠AOC90°時(shí),求出∠COF∠DOF+∠DOC150°α∠BOE∠BOD∠DOE120°+,即可得出答案.

解:(1)∵OA,OC重合,

∴∠AOD∠COD40°,∠BOD∠AOB+∠COD100°+40°140°,

∵OE平分∠AODOF平分∠BOD,

∴∠EOD∠AOD×40°20°,∠DOF∠BOD×140°70°

∴∠EOF∠DOF∠EOD70°20°50°;

(2)①∠BOF+∠COE90°;理由如下:

∵OE平分∠AOD,OF平分∠BOD

∴∠EOD∠AOE∠AOD(40°+α)20°+α,∠BOF∠BOD(∠AOB+∠COD+α)(100°+40°+α)70°+α,

∴∠COE∠AOE∠AOC20°+αα20°α,

∴∠BOF+∠COE70°+α+20°α90°

得:∠EOD∠AOE20°+α,∠DOF∠BOF70°+α,

當(dāng)∠AOC40°時(shí),如圖2所示:

∠COF∠DOF∠COD70°+α40°30°+α,

∠BOE∠BOD∠EOD∠AOB+∠COD+α∠EOD100°+40°+α(20°+α)120°+α,

∴∠BOE+∠COF∠AOC120°+α+30°+αα150°,

當(dāng)40°∠AOC90°時(shí),如圖3所示:

∠COF∠DOF+∠DOC(360°140°α)+40°150°α,

∠BOE∠BOD∠DOE140°+α(20°+α)120°+,

∴∠COF+∠AOC∠BOE150°(120°+)30°;

綜上所述,∠BOE,∠COF,∠AOC之間的數(shù)量關(guān)系為∠BOE+∠COF∠AOC150°∠COF+∠AOC∠BOE30°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某景點(diǎn)的門票價(jià)格如表:

購(gòu)票人數(shù)/

1~50

51~100

100以上

每人門票價(jià)/

12

10

8

某校七年級(jí)(1)、(2)兩班計(jì)劃去游覽該景點(diǎn),其中(1)班人數(shù)少于50人,(2)班人數(shù)多于50人且少于100人,如果兩班都以班為單位單獨(dú)購(gòu)票,則一共支付1118元;如果兩班聯(lián)合起來(lái)作為一個(gè)團(tuán)體購(gòu)票,則只需花費(fèi)816元.

(1)兩個(gè)班各有多少名學(xué)生?

(2)團(tuán)體購(gòu)票與單獨(dú)購(gòu)票相比較,兩個(gè)班各節(jié)約了多少錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)是4,DAC的平分線交DC于點(diǎn)E,若點(diǎn)P、Q分別是ADAE上的動(dòng)點(diǎn),則DQ+PQ的最小值( 。

A2

B、4

C

D、

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,觀察數(shù)軸,請(qǐng)回答:

(1)點(diǎn)與點(diǎn)的距離為 ,點(diǎn)與點(diǎn)的距離為 ;

點(diǎn)與點(diǎn)的距離為 ,點(diǎn)與點(diǎn)的距離為

(2)發(fā)現(xiàn):在數(shù)軸上,如果點(diǎn)與點(diǎn)分別表示數(shù),則它們之間的距離可表示為 (表示)

(3)利用發(fā)現(xiàn)的結(jié)論,逆向思維解決下列問(wèn)題:

①數(shù)軸上表示的點(diǎn)之間的距離是,則的值是 ;

,則 ;

③數(shù)軸上是否存在表示的點(diǎn),使點(diǎn)到點(diǎn)、點(diǎn)的距離之和為?若存在,請(qǐng)求出的值;若不存在,說(shuō)明理由;

的最小值為 ;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象相交于點(diǎn)A(m,3)、B(﹣6,n),與x軸交于點(diǎn)C.

(1)求一次函數(shù)y=kx+b的關(guān)系式;

(2)結(jié)合圖象,直接寫出滿足kx+b>的x的取值范圍;

(3)若點(diǎn)P在x軸上,且SACP=SBOC,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某農(nóng)戶承包荒山若干畝,種果樹2000棵.今年水果總產(chǎn)量為18000千克,此水果在市場(chǎng)上每千克售元,在果園每千克售.該農(nóng)戶將水果拉到市場(chǎng)出售平均每天出售1000千克,需8人幫忙,每人每天付工資25元,農(nóng)用車運(yùn)費(fèi)及其他各項(xiàng)稅費(fèi)平均每天100元.

1)分別用表示兩種方式出售水果的收入.

2)若元,元,且兩種方式都在相同的時(shí)間內(nèi)售完全部水果,請(qǐng)你通過(guò)計(jì)算說(shuō)明選擇哪種出售方式較好.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明和小亮兩人玩石頭、剪刀、布的游戲,游戲規(guī)則為:石頭勝剪刀,剪刀勝布,布勝石頭,相同則不分勝負(fù).

1)請(qǐng)用列表法或畫樹狀圖表示出所有可能出現(xiàn)的游戲結(jié)果;

2)求小明獲勝的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】考試前,同學(xué)們總會(huì)采用各種方式緩解考試壓力,以最佳狀態(tài)迎接考試.某校對(duì)該校九年級(jí)的部分同學(xué)做了一次內(nèi)容為“最適合自己的考前減壓方式”的調(diào)查活動(dòng),學(xué)校將減壓方式分為五類,同學(xué)們可根據(jù)自己的情況必選且只選其中一類.?dāng)?shù)據(jù)收集整理后,繪制了圖1和圖2兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)統(tǒng)計(jì)圖中的信息解答下列問(wèn)題:

(1)請(qǐng)通過(guò)計(jì)算,補(bǔ)全條形統(tǒng)計(jì)圖;

(2)請(qǐng)直接寫出扇形統(tǒng)計(jì)圖中“享受美食”所對(duì)應(yīng)圓心角的度數(shù)為  

(3)根據(jù)調(diào)查結(jié)果,可估計(jì)出該校九年級(jí)學(xué)生中減壓方式的眾數(shù)和中位數(shù)分別是  ,  

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖乙,△ABC和△ADE是有公共頂點(diǎn)的等腰直角三角形,∠BAC=DAE=90°,點(diǎn)P為射線BD,CE的交點(diǎn).

(1)如圖甲,將△ADE繞點(diǎn)A 旋轉(zhuǎn),當(dāng)C、D、E在同一條直線上時(shí),連接BD、BE,則下列給出的四個(gè)結(jié)論中,其中正確的是_____

BD=CEBDCE③∠ACE+∠DBC=45°BE2=2(AD2+AB2

(2)若AB=4,AD=2,把△ADE繞點(diǎn)A旋轉(zhuǎn),

①當(dāng)∠EAC=90°時(shí),求PB的長(zhǎng);

②求旋轉(zhuǎn)過(guò)程中線段PB長(zhǎng)的最大值.

     

查看答案和解析>>

同步練習(xí)冊(cè)答案