【題目】已知函數(shù)f(x)=lnx﹣a(a∈R)與函數(shù) 有公共切線. (Ⅰ)求a的取值范圍;
(Ⅱ)若不等式xf(x)+e>2﹣a對于x>0的一切值恒成立,求a的取值范圍.
【答案】解:(Ⅰ) , . ∵函數(shù)f(x)與F(x)有公共切線,∴函數(shù)f(x)與F(x)的圖象相切或無交點.
當(dāng)兩函數(shù)圖象相切時,設(shè)切點的橫坐標(biāo)為x0(x0>0),則 ,
解得x0=2或x0=﹣1(舍去),
則f(2)=F(2),得a=ln2﹣3,
由此求出a≥ln2﹣3,即a的取值范圍為[ln2﹣3,+∞).
(Ⅱ)等價于xlnx+a+e﹣2﹣ax≥0在x∈(0,+∞)上恒成立,
令g(x)=xlnx+a+e﹣2﹣ax,
因為g'(x)=lnx+1﹣a,令g'(x)=0,得 ,
x |
|
|
|
g'(x) | ﹣ | 0 | + |
g(x) | 極小值 |
所以g(x)的最小值為 ,
令 ,因為 ,
令t'(x)=0,得x=1,且
x | (0,1) | 1 | (1,+∞) |
t'(x) | + | 0 | ﹣ |
t(x) | 極大值 |
所以當(dāng)a∈(0,1)時,g(x)的最小值 ,
當(dāng)a∈[1,+∞)時,g(x)的最小值為 =t(2),
所以a∈[1,2].
綜上得a的取值范圍為(0,2]
【解析】.(Ⅰ) , .由函數(shù)f(x)與F(x)有公共切線,知函數(shù)f(x)與F(x)的圖象相切或無交點.由此能求出a的取值范圍(Ⅱ)等價于xlnx+a+e﹣2﹣ax≥0在x∈(0,+∞)上恒成立,令g(x)=xlnx+a+e﹣2﹣ax,g'(x)=lnx+1﹣a,令g'(x)=0,得 ,從而求出g(x)的最小值,令 ,由 =0,得x=1,由此能求出a的取值范圍.
【考點精析】根據(jù)題目的已知條件,利用利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和函數(shù)的最大(小)值與導(dǎo)數(shù)的相關(guān)知識可以得到問題的答案,需要掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負有如下關(guān)系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減;求函數(shù)在上的最大值與最小值的步驟:(1)求函數(shù)在內(nèi)的極值;(2)將函數(shù)的各極值與端點處的函數(shù)值,比較,其中最大的是一個最大值,最小的是最小值.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了傳承中華優(yōu)秀傳統(tǒng)文化,市教育局決定開展“經(jīng)典誦讀進校園”活動,某校團委組織八年級100名學(xué)生進行“經(jīng)典誦讀”選拔賽,賽后對全體參賽學(xué)生的成績進行整理,得到下列不完整的統(tǒng)計圖表.
組別 | 分數(shù)段 | 頻次 | 頻率 |
A | 60≤x<70 | 17 | 0.17 |
B | 70≤x<80 | 30 | a |
C | 80≤x<90 | b | 0.45 |
D | 90≤x<100 | 8 | 0.08 |
請根據(jù)所給信息,解答以下問題:
(1)表中a= , b=;
(2)請計算扇形統(tǒng)計圖中B組對應(yīng)扇形的圓心角的度數(shù);
(3)已知有四名同學(xué)均取得98分的最好成績,其中包括來自同一班級的甲、乙兩名同學(xué),學(xué)校將從這四名同學(xué)中隨機選出兩名參加市級比賽,請用列表法或畫樹狀圖法求甲、乙兩名同學(xué)都被選中的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為2的菱形ABCD中, ∠ABC=120°, E,F分別為AD,CD上的動點,且AE+CF=2,則線段EF長的最小值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ex﹣asinx﹣1,a∈R.
(1)若a=1,求f(x)在x=0處的切線方程;
(2)若f(x)≥0在區(qū)間[0,1)恒成立,求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)f(x)=(x2﹣ax+a+1)ex(a∈N)在區(qū)間(1,3)只有1個極值點,則曲線f(x)在點(0,f(0))處切線的方程為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C所對應(yīng)的邊分別為a,b,c,a﹣b=bcosC.
(1)求證:sinC=tanB;
(2)若a=1,C為銳角,求c的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】4月23人是“世界讀書日”,某中學(xué)在此期間開展了一系列的讀書教育活動,為了解本校學(xué)生課外閱讀情況,學(xué)校隨機抽取了100名學(xué)生對其課外閱讀時間進行調(diào)查,下面是根據(jù)調(diào)查結(jié)果繪制的學(xué)生日均課外閱讀時間(單位:分鐘)的頻率分布直方圖,若將日均課外閱讀時間不低于60分鐘的學(xué)生稱為“讀書謎”,低于60分鐘的學(xué)生稱為“非讀書謎”
(1)根據(jù)已知條件完成下面2×2的列聯(lián)表,并據(jù)此判斷是否有99%的把握認為“讀書謎”與性別有關(guān)?
非讀書迷 | 讀書迷 | 合計 | |
男 | 15 | ||
女 | 45 | ||
合計 |
(2)將頻率視為概率,現(xiàn)在從該校大量學(xué)生中,用隨機抽樣的方法每次抽取1人,共抽取3次,記被抽取的3人中的“讀書謎”的人數(shù)為X,若每次抽取的結(jié)果是相互獨立的,求X的分布列,期望E(X)和方程D(X) 附:K2= n=a+b+c+d
P(K2≥k0) | 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)△ABC的內(nèi)角A、B、C的對邊長分別為a、b、c.設(shè)S為△ABC的面積,滿足S= (a2+c2﹣b2). (Ⅰ)求B;
(Ⅱ)若b= ,求( ﹣1)a+2c的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com