如圖,△ABC繞點B逆時針方向旋轉(zhuǎn)到△EBD的位置,若∠A=15°,∠C=10°,E,B,C在同一直線上,則∠ABC=______,旋轉(zhuǎn)角度是______.
在△ABC中,已知∠A=15°,∠C=10°,
∴∠ABC=180°-∠A-∠C=155°;
又∵點B為旋轉(zhuǎn)中心,E的對應(yīng)點為A,
∴旋轉(zhuǎn)角為∠ABE=180°-∠ABC=25°.
故答案為:155°,25°.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:反比例函數(shù)y=-
6
x

(1)若將反比例函數(shù)y=-
6
x
的圖象繞原點O旋轉(zhuǎn)90°,求所得到的雙曲線C的解析式并畫圖;
(2)雙曲線C上是否存在到原點O距離為
13
的點P?若存在,求出點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,△ABC在方格紙中.
(1)請在方格紙上建立平面直角坐標(biāo)系,使A(-5,-1),C(-1,-2),并求出B點坐標(biāo);
(2)以原點O為旋轉(zhuǎn)中心,將△ABC繞點O逆時針旋轉(zhuǎn)90°得到△A′B′C′.請在圖中畫出△A′B′C′,并寫出點A′,B′,C′的坐標(biāo).
(3)以原點O為位似中心,相似比為2,在第一象限內(nèi)將△ABC放大,畫出放大后
的圖形△A″B″C″.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,將△ABC繞點C順時針方向旋轉(zhuǎn)40°得△A′B′C′,若AC⊥A′B′,求∠BAC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,已知△ABC的三個頂點的坐標(biāo)分別為A(-4,3)、B(-3,1)、C(-1,3).
(1)請按下列要求畫圖:
①將△ABC先向右平移4個單位長度、再向上平移2個單位長度,得到△A1B1C1,畫出△A1B1C1
②△A2B2C2與△ABC關(guān)于原點O成中心對稱,畫出△A2B2C2
(2)在(1)中所得的△A1B1C1和△A2B2C2關(guān)于點M成中心對稱,請直接寫出對稱中心M點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖可以看作是一個等腰直角三角形旋轉(zhuǎn)若干次而生成的,則每次旋轉(zhuǎn)的度數(shù)可以是( 。
A.90°B.60°C.45°D.30°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,P為正方形ABCD內(nèi)一點,PA=1,PB=2,PC=3,以點B為旋轉(zhuǎn)中心,將△ABP順時針旋轉(zhuǎn),使點A與點C重合,這時P點旋轉(zhuǎn)至G點,試畫出旋轉(zhuǎn)后的圖形,然后猜一猜△PCG的形狀,并說明理由,最后算一算∠APB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,△ABC為等邊三角形,四邊形ABDE和四邊形ACFG都是正方形.
(1)△ABG是怎樣變換得到△AEC?請具體說明.
(2)證明:BG=CE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知△ABC是等邊三角形.
(1)將△ABC繞點A逆時針旋轉(zhuǎn)角θ(0°<θ<180°),得到△ADE,BD和EC所在直線相交于點O.
①如圖a,當(dāng)θ=20°時,△ABD與△ACE是否全等?______(填“是”或“否”),∠BOE=______度;
②當(dāng)△ABC旋轉(zhuǎn)到如圖b所在位置時,求∠BOE的度數(shù);
(2)如圖c,在AB和AC上分別截取點B′和C′,使AB=
3
AB′,AC=
3
AC′,連接B′C′,將△AB′C′繞點A逆時針旋轉(zhuǎn)角(0°<θ<180°),得到△ADE,BD和EC所在直線相交于點O,請利用圖c探索∠BOE的度數(shù),直接寫出結(jié)果,不必說明理由.

查看答案和解析>>

同步練習(xí)冊答案