【題目】某中學(xué)有庫存1800套舊桌凳,修理后捐助貧困山區(qū)學(xué)校.現(xiàn)有甲,乙兩個木工組都想承攬這項(xiàng)業(yè)務(wù).經(jīng)協(xié)商后得知:甲木工組每天修理的桌凳套數(shù)是乙木工組每天修理桌凳套數(shù)的,甲木工組單獨(dú)修理這批桌凳的天數(shù)比乙木工組單獨(dú)修理這批桌凳的天數(shù)多10天,甲木工組每天的修理費(fèi)用是600元,乙木工組每天的修理費(fèi)用是800元.

1)求甲,乙兩木工組單獨(dú)修理這批桌凳的天數(shù);

2)現(xiàn)有三種修理方案供選擇:方案一,由甲木工組單獨(dú)修理這批桌凳;方案二,由乙木工組單獨(dú)修理這批桌凳;方案三,由甲,乙兩個木工組共同合作修理這批桌凳.請計算說明哪種方案學(xué)校付的修理費(fèi)最少.

【答案】130,20;(2)第二種方案學(xué)校付的修理費(fèi)最少.

【解析】

1)關(guān)鍵描述語為:甲小組單獨(dú)修理這批桌凳比乙小組多用20;等量關(guān)系為:甲小組單獨(dú)修理這批桌凳的時間=乙小組單獨(dú)修理這批桌凳的時間+20

2)必須每種情況都考慮到,求出每種情況下實(shí)際花費(fèi),進(jìn)行比較.

解:(1)設(shè)甲木工組單獨(dú)修理這批桌凳的天數(shù)為x天,則乙木工組單獨(dú)修理這批桌凳的天數(shù)為(x10)天;

根據(jù)題意得,

×,

解得:x30

經(jīng)檢驗(yàn):x30是原方程的解.

x1020

答:甲,乙兩木工組單獨(dú)修理這批桌凳的天數(shù)分別為30天,20天;

2)方案一:甲木工組單獨(dú)修理這批桌凳的總費(fèi)用:600×3018000(元).

方案二,乙小組單獨(dú)修理,則需總費(fèi)用:800×2016000(元).

方案三,甲,乙兩個木工組共同合作修理需12(天)

總費(fèi)用:(600+800×1216800(元)

通過比較看出:選擇第二種方案學(xué)校付的修理費(fèi)最少.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長度為1個單位長度的小正方形組成的正方形中,點(diǎn)A,B,C在小正方形的頂點(diǎn)上.

1)在圖中畫出與ABC關(guān)于直線l成軸對稱的ABC

2)三角形ABC的面積為   ;

3)在直線l上找一點(diǎn)P,使PA+PB的長最短.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知正方形ABCD的邊長為5,EBC邊上運(yùn)動,DE的中點(diǎn)G,EGE順時針旋轉(zhuǎn)90°EF,問CE為多少時A、C、F在一條直線上(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法:

位似圖形一定是相似圖形相似圖形一定是位似圖形

位似圖形對應(yīng)頂點(diǎn)的連線相交于一點(diǎn)位似圖形的對應(yīng)邊互相平行.

其中正確的有(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的斜邊上異于、的一定點(diǎn),過點(diǎn)作直線于點(diǎn),使截得的相似.已知,,則________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程①和②問是否存在這樣的n值,使方程①的兩個實(shí)數(shù)根的差的平方等于方程②的一整數(shù)根?若存在,求出這樣的n值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分10分)

由于霧霾天氣頻發(fā),市場上防護(hù)口罩出現(xiàn)熱銷.某藥店準(zhǔn)備購進(jìn)一批口罩,已知1個A型口罩和3個B型口罩共需26元;3個A型口罩和2個B型口罩共需29元.

求一個A型口罩和一個B型口罩的售價各是多少元?

藥店準(zhǔn)備購進(jìn)這兩種型號的口罩共50個,其中A型口罩?jǐn)?shù)量不少于35個,且不多于B型口罩的3倍,有哪幾種購買方案,哪種方案最省錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在半徑是4⊙O中,AB、CD是兩條直徑,MOB的中點(diǎn),CM的延長線交⊙O于點(diǎn)E,且EM>MC,連接DE,DE=

(1)求證:△AMC∽△EMB;

(2)求EM的長;

(3)求sin∠EOB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將ABC分別沿ABAC翻折得到ABD AEC,線段BDAE交于點(diǎn) F,連接BE .

1)如果∠ABC=16,∠ACB=30°,求∠DAE的度數(shù);

2)如果BDCE,求∠CAB 的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案