精英家教網(wǎng)如圖所示,在△ABC中,AB=5cm,AC=13cm,BC邊上的中線AD=6cm,那么邊BC的長(zhǎng)為
 
cm.
分析:延長(zhǎng)AD到E,使DE=AD=6,連接CE,可證△ABD≌△ECD,利用勾股定理的逆定理可求∠AEC=90°,再利用勾股定理,即可求出CD的長(zhǎng),進(jìn)而求出答案.
解答:精英家教網(wǎng)解:延長(zhǎng)AD到E,使DE=AD=6,連接CE,
∵BD=CD,∠ADB=∠CDE,
∴△ABD≌△ECD,
∴CE=AB=5,
∵AC2=AE2+CE2即132=122+52,
∴△AEC為直角三角形,即∠E=90°,
∴△DEC為直角三角形,
∴CD=
ED2+CE2
=
61
,BC=2CD=2
61
(cm),故填2
61
點(diǎn)評(píng):本題需仔細(xì)分析題意,結(jié)合圖形,利用勾股定理和勾股定理的逆定理即可解決問(wèn)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,在△ABC中,∠A=47°,∠C=77°,DE∥BC,BF平分∠ABC,BF交DE于點(diǎn)F,求∠BFE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,在△ABC中,D是AC的中點(diǎn),E是線段BC延長(zhǎng)線上一點(diǎn),過(guò)點(diǎn)A作AF∥BC交ED的延長(zhǎng)線于點(diǎn)F,連接AE,CF.
求證:(1)四邊形AFCE是平行四邊形;
(2)FG•BE=CE•AE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

15、如圖所示,在△ABC中,DM、EN分別垂直平分AB和AC,交BC于D、E,若∠DAE=50°,則∠BAC=
115
度,若△ADE的周長(zhǎng)為19cm,則BC=
19
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,在△ABC中,AB=AC,DE是邊AB的垂直平分線,交AB于E,交AC于D,若△BCD的周長(zhǎng)為18cm,△ABC的周長(zhǎng)為30cm,那么BE的長(zhǎng)為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在△ABC中,BC=7cm,AB=25cm,AC=24cm,P點(diǎn)在BC上從B點(diǎn)向C點(diǎn)運(yùn)動(dòng)(不包括點(diǎn)C),點(diǎn)P的運(yùn)動(dòng)速度為2cm∕s;Q點(diǎn)在AC上從C點(diǎn)向點(diǎn)A運(yùn)動(dòng)(不包括點(diǎn)A),運(yùn)動(dòng)速度為5cm∕s,若點(diǎn)P、Q分別從B、C同時(shí)運(yùn)動(dòng),請(qǐng)解答下面的問(wèn)題,并寫出主要過(guò)程.
(1)經(jīng)過(guò)多長(zhǎng)時(shí)間后,P、Q兩點(diǎn)的距離為5
2
cm?
(2)經(jīng)過(guò)多長(zhǎng)時(shí)間后,△PCQ面積為15cm2?

查看答案和解析>>

同步練習(xí)冊(cè)答案