如圖,已知AD是△ABC的角平分線,DE∥AB交AC于點E.那么△ADE是等腰三角形嗎?請說明理由.
分析:△ADE是等腰三角形,根據(jù)角平分線的性質(zhì)和平行線的性質(zhì)證明:∠2=∠3即可.
解答:答:△ADE是等腰三角形,
理由如下:
∵AD是△ABC的角平分線,
∴∠1=∠2,
∵DE∥AB,
∴∠1=∠3,
∴∠2=∠3,
∴AE=DE,
∴△ADE是等腰三角形.
點評:本題考查了等腰三角形的判定及性質(zhì)和平行線的性質(zhì);進行角的等量代換是正確解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

9、如圖,已知AD是△ABC的角平分線,CE⊥AD,垂足O,CE交AB于E,則下列命題:①AE=AC,②CO=OE,③∠AEO=∠ACO,④∠B=∠ECB.其中正確的是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

18、如圖,已知AD是△ABC的角平分線,在不添加任何輔助線的前提下,要使△AED≌△AFD,需添加一個條件是:
AE=AF或∠EDA=∠FDA
,并給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知AD是等腰三角形ABC底邊上的高,AD與底邊BC的比是2:3,等腰三角形的面積是12cm,求等腰三角形ABC的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知AD是△ABC的中線,∠ADC=45°,把△ABC沿AD對折,點C落在點E的位置,連接BE,若BC=6cm.
(1)求BE的長;
(2)當(dāng)AD=4cm時,求四邊形BDAE的面積.

查看答案和解析>>

同步練習(xí)冊答案