【題目】如圖,已知拋物線(xiàn)軸分別交于原點(diǎn)和點(diǎn),與對(duì)稱(chēng)軸交于點(diǎn).矩形的邊軸正半軸上,且,邊,與拋物線(xiàn)分別交于點(diǎn),.當(dāng)矩形沿軸正方向平移,點(diǎn),位于對(duì)稱(chēng)軸的同側(cè)時(shí),連接,此時(shí),四邊形的面積記為;點(diǎn),位于對(duì)稱(chēng)軸的兩側(cè)時(shí),連接,此時(shí)五邊形的面積記為.將點(diǎn)與點(diǎn)重合的位置作為矩形平移的起點(diǎn),設(shè)矩形平移的長(zhǎng)度為.

(1)求出這條拋物線(xiàn)的表達(dá)式;

(2)當(dāng)時(shí),求的值;

(3)當(dāng)矩形沿著軸的正方向平移時(shí),求關(guān)于的函數(shù)表達(dá)式,并求出為何值時(shí),有最大值,最大值是多少?

【答案】(1)y=-x2+2x.(2).(3)S=-t2+t-,當(dāng)t=時(shí),S有最大值,最大值是

【解析】分析: (1)根據(jù)點(diǎn)E、F的坐標(biāo),利用待定系數(shù)法即可求出拋物線(xiàn)的表達(dá)式;

(2)找出當(dāng)t=0時(shí),點(diǎn)B、N的坐標(biāo),進(jìn)而可得出OB、BN的長(zhǎng)度,再根據(jù)三角形的面積公式可求出SOBN的值;

(3)分0<t≤44<t≤5兩種情況考慮:①當(dāng)0<t≤4時(shí)(圖1),找出點(diǎn)A、B、M、N的坐標(biāo),進(jìn)而可得出AM、BN的長(zhǎng)度,利用梯形的面積公式即可找出S關(guān)于t的函數(shù)關(guān)系式,再利用二次函數(shù)的性質(zhì)即可求出S的最大值;②當(dāng)4<t≤5時(shí),找出點(diǎn)A、B、M、N的坐標(biāo),進(jìn)而可得出AM、BN的長(zhǎng)度,將五邊形分成兩個(gè)梯形,利用梯形的面積公式即可找出S關(guān)于t的函數(shù)關(guān)系式,再利用二次函數(shù)的性質(zhì)即可求出S的最大值.將①②中的S的最大值進(jìn)行比較,即可得出結(jié)論.

詳解:

1)將E(5,5)、F(10,0)代入y=ax2+bx,

,解得:,

∴拋物線(xiàn)的表達(dá)式為y=-x2+2x.

(2)當(dāng)t=0時(shí),點(diǎn)B的坐標(biāo)為(1,0),點(diǎn)N的坐標(biāo)為(1,),

BN=,OB=1,

SOBN=BNOB=

(3)①當(dāng)0<t≤4時(shí)(圖1),點(diǎn)A的坐標(biāo)為(t,0),點(diǎn)B的坐標(biāo)為(t+1,0),

∴點(diǎn)M的坐標(biāo)為(t,-t2+2t),點(diǎn)N的坐標(biāo)為(t+1,-(t+1)2+2(t+1)),

AM=-t2+2t,BN=-(t+1)2+2(t+1),

S=(AM+BN)AB=×1×[-t2+2t-(t+1)2+2(t+1)],

=-t2+t+,

=-(t-2+,

-<0,

∴當(dāng)t=4時(shí),S取最大值,最大值為;

②當(dāng)4<t≤5時(shí)(圖2),點(diǎn)A的坐標(biāo)為(t,0),點(diǎn)B的坐標(biāo)為(t+1,0),

∴點(diǎn)M的坐標(biāo)為(t,-t2+2t),點(diǎn)N的坐標(biāo)為(t+1,-(t+1)2+2(t+1)),

AM=-t2+2t,BN=-(t+1)2+2(t+1),

S=(5-t)(-t2+2t+5)+(t-4)[5-(t+1)2+2(t+1)],

=t3-3t2+5t+25)+(-t3+t2+t-),

=-t2+t-,

=-(t-2+,

-<0,

∴當(dāng)t=時(shí),S取最大值,最大值為

=,

∴當(dāng)t=時(shí),S有最大值,最大值是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1是個(gè)三角形,分別連接這個(gè)三角形三邊中點(diǎn)得到圖2,再分別連接圖2中間小三角形三邊的中點(diǎn)得到圖3

1中有_ __個(gè)三角形,圖2中有 __個(gè)三角形,圖3 中有 __個(gè)三角形;

按上面的方法繼續(xù)下去,第個(gè)圖形有________個(gè)三角形;(用含的式子表示)

當(dāng)時(shí),圖形中有多少個(gè)三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某自行車(chē)廠一周計(jì)劃生產(chǎn)輛,自行車(chē)廠平均每天生產(chǎn)自行車(chē)輛,由于各種原因?qū)嶋H每天生產(chǎn)量與計(jì)劃每天生產(chǎn)量相比有出入,下表是某周的自行車(chē)生產(chǎn)情況(超計(jì)劃生產(chǎn)量為正、不足計(jì)劃生產(chǎn)量為負(fù),單位:輛)

星期

增將

根據(jù)記錄可知前三天共生產(chǎn)自行車(chē) 輛;

產(chǎn)量最多的一天比產(chǎn)量最少的一天多生產(chǎn) 輛;

若該廠實(shí)行按生產(chǎn)的自行車(chē)數(shù)量的多少計(jì)工資(即計(jì)件工資制).如果每生產(chǎn)一輛自行車(chē)可得人民幣元,那么該廠工人這一周的工資總額是多少元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】知識(shí)準(zhǔn)備:數(shù)軸上兩點(diǎn)對(duì)應(yīng)的數(shù)分別為.則兩點(diǎn)之間的距離表示為:

問(wèn)題探究:數(shù)軸上兩點(diǎn)對(duì)應(yīng)的數(shù)分別為滿(mǎn)足

直接寫(xiě)出:___、

在數(shù)軸上有一點(diǎn)對(duì)應(yīng)的數(shù)為,請(qǐng)問(wèn):當(dāng)點(diǎn)兩點(diǎn)的距離和為時(shí),滿(mǎn)足什么條件?請(qǐng)利用數(shù)軸進(jìn)行說(shuō)明(此時(shí)最小)

拓展:當(dāng)數(shù)軸上三點(diǎn)對(duì)應(yīng)的數(shù)分別為在數(shù)軸上有一點(diǎn)對(duì)應(yīng)的數(shù)為,當(dāng)滿(mǎn)足什么條件時(shí),的值最小?

應(yīng)用:國(guó)慶期間漢口江灘武漢關(guān)至長(zhǎng)江二橋之間是觀看“70周年國(guó)慶燈光秀”的理想?yún)^(qū)域,武漢關(guān)與長(zhǎng)江二橋相距約公里。在國(guó)慶期間,為了服務(wù)廣大市民,漢口江灘管理處在漢口江灘武漢關(guān)至長(zhǎng)江二橋之間每隔公里安排了便民服務(wù)小組(武漢關(guān)與長(zhǎng)江二橋不安排) ,還需要設(shè)置一個(gè)便民服務(wù)物資站,請(qǐng)問(wèn)便民服務(wù)物資站應(yīng)該設(shè)置在什么地方,使它到各個(gè)便民服務(wù)小組的距離和最小,最小值是多少公里?便民服務(wù)物資站位置代表的數(shù)記作利用下圖直接給出結(jié)果:滿(mǎn)足的條件: 最小值為 公里.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠C=90°,BE平分∠ABCAC于點(diǎn)E,作EDEBAB于點(diǎn)D,OBED的外接圓.

(1)求證:AC是⊙O的切線(xiàn);

(2)已知⊙O的半徑為2.5,BE=4,求BC,AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的面積為12,△ABC是等邊三角形,點(diǎn)E在正方形ABCD內(nèi),對(duì)角線(xiàn)AC上有一點(diǎn)P使PE+PD的和最小,這個(gè)最小值為( )

A. B. C. 3 D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知ABC中,AB=10,AC=2B=30°,則ABC的面積等于_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形OABC頂點(diǎn)B的坐標(biāo)為(8,3),定點(diǎn)D的坐標(biāo)為(12,0),動(dòng)點(diǎn)P從點(diǎn)C出發(fā).以每秒1個(gè)單位長(zhǎng)度的速度沿CB勻速運(yùn)動(dòng)動(dòng)點(diǎn)Q從點(diǎn)D出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿x軸的負(fù)方向勻速運(yùn)動(dòng),P,Q兩點(diǎn)同時(shí)運(yùn)動(dòng),當(dāng)Q點(diǎn)到達(dá)O點(diǎn)時(shí)兩點(diǎn)同時(shí)停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒,

(1)當(dāng)t為何值時(shí)四邊形OCPQ為矩形?

(2)當(dāng)t為何值時(shí),以C,P,Q,A為頂點(diǎn)的四邊形為平行四邊形?

(3)E點(diǎn)坐標(biāo)(5,0),當(dāng)△OEP為等腰三角形時(shí),請(qǐng)直接寫(xiě)出所有符合條件的點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下面材料

在數(shù)學(xué)課上,老師提出如下問(wèn)題:

己知:已知:RtABC,ABC=90°.

求作:矩形ABCD.

小敏的作法如下:

①以A為圓心,BC長(zhǎng)為半徑作弧,以C為圓心,AB長(zhǎng)為半徑作弧,兩弧相交于點(diǎn)D;

②連接DA、DC;所以四邊形ABCD為所求矩形.

老師說(shuō):“小敏的作法正確.”

請(qǐng)回答:小敏的作法正確的理由是____________________.

查看答案和解析>>

同步練習(xí)冊(cè)答案