【題目】如圖,點(diǎn)P為定角∠AOB的平分線上的一個(gè)定點(diǎn),且∠MPN∠AOB互補(bǔ),若∠MPN在繞點(diǎn)P旋轉(zhuǎn)的過程中,其兩邊分別與OA、OB相交于MN兩點(diǎn),則以下結(jié)論:(1PM=PN恒成立;(2OM+ON的值不變;(3)四邊形PMON的面積不變;(4MN的長(zhǎng)不變,其中正確的個(gè)數(shù)為( 。

A. 4B. 3C. 2D. 1

【答案】B

【解析】

如圖,過點(diǎn)PPC垂直AO于點(diǎn)C,PD垂直BO于點(diǎn)D,根據(jù)角平分線的性質(zhì)可得PC=PD,因∠AOB∠MPN互補(bǔ),可得∠MPN=∠CPD,即可得∠MPC=∠DPN,即可判定△CMP≌△NDP,所以PM=PN,(1)正確;由△CMP≌△NDP可得CM=CN,所以OM+ON=2OC,(2)正確;四邊形PMON的面積等于四邊形PCOD的面積,(3)正確;連結(jié)CD,因PC=PDPM=PN,∠MPN=∠CPD,PM>PC,可得CD≠M(fèi)N,所以(4)錯(cuò)誤,故選B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O中,F(xiàn)G、AC是直徑,AB是弦,F(xiàn)G⊥AB,垂足為點(diǎn)P,過點(diǎn)C的直線交AB的延長(zhǎng)線于點(diǎn)D,交GF的延長(zhǎng)線于點(diǎn)E,已知AB=4,⊙O的半徑為
(1)分別求出線段AP、CB的長(zhǎng);
(2)如果OE=5,求證:DE是⊙O的切線;
(3)如果tan∠E= ,求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,下列判斷錯(cuò)誤的是( )

A. 如果∠2=∠4,那么AB∥CD B. 如果∠1=∠3,那么AB∥CD

C. 如果∠BAD+∠D=180°,那么AB∥CD D. 如果∠BAD+∠B=180,那么AD∥CD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了迎接“六一”國(guó)際兒童節(jié),某童裝品牌專賣店準(zhǔn)備購(gòu)進(jìn)甲、乙兩種童裝,這兩種童裝的進(jìn)價(jià)和售價(jià)如下表:

價(jià)格

進(jìn)價(jià)(元/件)

m

m+20

售價(jià)(元/件)

150

160

如果用5000元購(gòu)進(jìn)甲種童裝的數(shù)量與用6000元購(gòu)進(jìn)乙種童裝的數(shù)量相同.

(1)m的值;

(2)要使購(gòu)進(jìn)的甲、乙兩種童裝共200件的總利潤(rùn)(利潤(rùn)=售價(jià)﹣進(jìn)價(jià))不少于8980元,且甲種童裝少于100件,問該專賣店有哪幾種進(jìn)貨方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小明、小英、小麗和小華的家都在同一條街的同側(cè)居民住宅的一排住宅樓內(nèi)居住,四個(gè)家庭的住址位于同一直線上.小明家到小英家的距離約為480米,小麗家到小英家的距離約為320米,小華家在小明家和小麗家之間線段的中點(diǎn)的位置.

請(qǐng)你通過所學(xué)圖形知識(shí)建立數(shù)學(xué)模型,畫出圖形,求出小明家和小華家的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在△ABC中,∠BAC的平分線與線段BC的垂直平分線PQ相交于點(diǎn)P,過點(diǎn)P分別作PN垂直于AB于點(diǎn)N,PM垂直于AC于點(diǎn)M,BN和CM有什么數(shù)量關(guān)系?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形OABC的頂點(diǎn)A、C分別在x、y軸的正半軸上,點(diǎn)D為BC邊上的點(diǎn),反比例函數(shù)y= (k≠0)在第一象限內(nèi)的圖象經(jīng)過點(diǎn)D(m,2)和AB邊上的點(diǎn)E(3, ).
(1)求反比例函數(shù)的表達(dá)式和m的值;
(2)將矩形OABC的進(jìn)行折疊,使點(diǎn)O于點(diǎn)D重合,折痕分別與x軸、y軸正半軸交于點(diǎn)F,G,求折痕FG所在直線的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面是“作三角形一邊中線”的尺規(guī)作圖過程. 已知:△ABC(如圖1),求作:BC邊上的中線AD.
作法:如圖2,

(i)分別以點(diǎn)B,C為圓心,AC,AB長(zhǎng)為半徑作弧,兩弧相交于P點(diǎn);
(ii)作直線AP,AP與BC交于D點(diǎn).
所以線段AD就是所求作的中線.
請(qǐng)回答:該作圖的依據(jù)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=﹣3x+m與雙曲線y= 相交于點(diǎn)A(m,2).
(1)求雙曲線y= 的表達(dá)式;
(2)過動(dòng)點(diǎn)P(n,0)且垂直于x軸的直線與直線y=﹣3x+m及雙曲線y= 的交點(diǎn)分別為B和C,當(dāng)點(diǎn)B位于點(diǎn)C下方時(shí),求出n的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案