【題目】如圖,拋物線與x軸交于點A(﹣5,0)和點B(3,0).與y軸交于點C(0,5).有一寬度為1,長度足夠的矩形(陰影部分)沿x軸方向平移,與y軸平行的一組對邊交拋物線于點P和Q,交直線AC于點M和N.交x軸于點E和F.

(1)求拋物線的解析式;
(2)當(dāng)點M和N都在線段AC上時,連接MF,如果sin∠AMF= ,求點Q的坐標;
(3)在矩形的平移過程中,當(dāng)以點P,Q,M,N為頂點的四邊形是平行四邊形時,求點M的坐標.

【答案】
(1)

解:∵拋物線與x軸交于點A(﹣5,0),B(3,0),

∴可以假設(shè)拋物線為y=a(x+5)(x﹣3),把點(0,5)代入得到a=﹣

∴拋物線的解析式為y=﹣ x2 x+5.


(2)

解:)作FG⊥AC于G,設(shè)點F坐標(m,0),

則AF=m+5,AE=EM=m+6,F(xiàn)G= (m+5),F(xiàn)M= =

∵sin∠AMF= ,

= ,

= ,整理得到2m2+19m+44=0,

∴(m+4)(2m+11)=0,

∴m=﹣4或﹣5.5(舍棄),

∴點Q坐標(﹣4,


(3)

解:

①當(dāng)MN是對角線時,設(shè)點F(m,0).

∵直線AC解析式為y=x+5,

∴點N(m,m+5),點M(m+1,m+6),

∵QN=PM,

∴﹣ m2 m+5﹣m﹣5=m+6﹣[﹣ (m+1)2 (m+1)+5],

解得m=﹣3± ,

∴點M坐標(﹣2+ ,3+ )或(﹣2﹣ ,3﹣ ).

②當(dāng)MN為邊時,MN=PQ= ,設(shè)點Q(m,﹣ m2﹣ /span> m+5)則點P(m+1,﹣ m2 m+6),

∴﹣ m2 m+6=﹣ (m+1)2 (m+1)+5,

解得m=﹣3.

∴點M坐標(﹣2,3),

綜上所述以點P,Q,M,N為頂點的四邊形是平行四邊形時,點M的坐標為(﹣2,3)或(﹣2+ ,3+ )或(﹣2﹣ ,3﹣ ).


【解析】(1)設(shè)拋物線為y=a(x+5)(x﹣3),把點(0,5)代入即可解決問題.(2)作FG⊥AC于G,設(shè)點F坐標(m,0),根據(jù)sin∠AMF= = ,列出方程即可解決問題.(3)①當(dāng)MN是對角線時,設(shè)點F(m,0),由QN=PM,列出方程即可解決問題.②當(dāng)MN為邊時,MN=PQ= ,設(shè)點Q(m,﹣ m2 m+5)則點P(m+1,﹣ m2 m+6),代入拋物線解析式,解方程即可.本題考查二次函數(shù)綜合題、三角函數(shù)、勾股定理等知識,解題的關(guān)鍵是學(xué)會待定系數(shù)法確定函數(shù)解析式,學(xué)會分類討論,用方程的思想解決問題,屬于中考壓軸題.
【考點精析】關(guān)于本題考查的二次函數(shù)的圖象和二次函數(shù)的性質(zhì),需要了解二次函數(shù)圖像關(guān)鍵點:1、開口方向2、對稱軸 3、頂點 4、與x軸交點 5、與y軸交點;增減性:當(dāng)a>0時,對稱軸左邊,y隨x增大而減;對稱軸右邊,y隨x增大而增大;當(dāng)a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小才能得出正確答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一漁船由西往東航行,在A點測得海島C位于北偏東60°的方向,前進40海里到達B點,此時,測得海島C位于北偏東30°的方向,則海島C到航線AB的距離CD是( 。

A.20海里
B.40海里
C.20海里
D.40海里

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點分別是軸上位于原點兩側(cè)的兩點,點在第一象限,直線 軸于點,直線軸于點.

(1);

(2)求點的坐標及的值;

(3),求直線的函數(shù)表達式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠A=30°,BC=1,點D,E分別是直角邊BC,AC的中點,則DE的長為( 。

A.1
B.2
C.
D.1+

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2﹣6x+(2m+1)=0有實數(shù)根.
(1)求m的取值范圍;
(2)如果方程的兩個實數(shù)根為x1 , x2 , 且2x1x2+x1+x2≥20,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】第十二屆全國人大四次會議審議通過的《中華人民共和國慈善法》將于今年9月1日正式實施,為了了解居民對慈善法的知曉情況,某街道辦從轄區(qū)居民中隨機選取了部分居民進行調(diào)查,并將調(diào)查結(jié)果繪制成如圖所示的扇形圖.若該轄區(qū)約有居民9000人,則可以估計其中對慈善法“非常清楚”的居民約有人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在學(xué)習(xí)完“利用三角函數(shù)測高”這節(jié)內(nèi)容之后,某興趣小組開展了測量學(xué)校旗桿高度的實踐活動,如圖,在測點A處安置測傾器,量出高度AB=1.5m,測得旗桿頂端D的仰角∠DBE=32°,量出測點A到旗桿底部C的水平距離AC=20m,根據(jù)測量數(shù)據(jù),求旗桿CD的高度.(參考數(shù)據(jù):sin32°≈0.53,cos32°≈0.85,tan32°≈0.62)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A、B、C是圓O上的三點,且四邊形ABCO是平行四邊形,OF⊥OC交圓O于點F,則∠BAF等于( 。

A.12.5°
B.15°
C.20°
D.22.5°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明、小剛和小紅打算各自隨機選擇本周日的上午或下午去揚州馬可波羅花世界游玩.
(1)小明和小剛都在本周日上午去游玩的概率為
(2)求他們?nèi)嗽谕粋半天去游玩的概率.

查看答案和解析>>

同步練習(xí)冊答案