【題目】如圖,已知AB是⊙O的直徑,過O點作OP⊥AB,交弦AC于點D,交⊙O于點E,且使∠PCA=∠ABC.
(1)求證:PC是⊙O的切線;
(2)若∠P=60°,PC=2,求PE的長.
【答案】(1)證明見解析;(2)4-.
【解析】
試題分析:(1)連接OC,由OB=OC及已知可得∠PCA=∠OCB.由直徑所對的圓周角為直角有∠ACB=90°,從而可得∠OCP=90°,所以PC是⊙O的切線;(2)在Rt△PCO中,利用∠P的正切和正弦分別求得OC、OP的長,再根據(jù)PE=OP-OE計算即可.
試題解析:(1)連接OC. ∵OB=OC,∴∠ABC=∠OCB. 又∠PCA=∠ABC,∴∠PCA=∠OCB.∵AB為⊙O直徑,∴∠ACB=90°. ∴∠ACO+∠OCB=90°,∴∠ACO+∠PCA=90°,即∠OCP=90°,∴PC是⊙O的切線;
(2)在Rt△PCO中,tan∠P=,∴OC=PCtan∠P=2tan60°=,sin∠P=,∴OP== =4,∴PE=OP-OE=OP-OC=4-.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=BC , ∠ABC=90°,F為AB延長線上一點,點E在BC上,且AE=CF .
(1)求證:△ABE≌△CBF;
(2)若∠BAE=25°,求∠ACF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,已知拋物線與軸交于,兩點,與軸交于點.
(1)求拋物線的函數(shù)表達式;
(2)若點是軸上的一點,且以為頂點的三角形與相似,求點的坐標(biāo);
(3)如圖2,軸瑋拋物線相交于點,點是直線下方拋物線上的動點,過點且與軸平行的直線與,分別交于點,,試探究當(dāng)點運動到何處時,四邊形的面積最大,求點的坐標(biāo)及最大面積;
(4)若點為拋物線的頂點,點是該拋物線上的一點,在軸,軸上分別找點,,使四邊形的周長最小,求出點,的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,動點在以為圓心,為直徑的半圓弧上運動(點不與點及的中點重合),連接.過點作于點,以為邊在半圓同側(cè)作正方形,過點作的切線交射線于點,連接、.
(1)探究:如左圖,當(dāng)動點在上運動時;
①判斷是否成立?請說明理由;
②設(shè),是否為定值?若是,求出該定值,若不是,請說明理由;
③設(shè),是否為定值?若是,求出該定值,若不是,請說明理由;
(2)拓展:如右圖,當(dāng)動點在上運動時;
分別判斷(1)中的三個結(jié)論是否保持不變?如有變化,請直接寫出正確的結(jié)論.(均不必說明理由)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們知道一次函數(shù) 與 的圖象關(guān)于 軸對稱,所以我們定義:函數(shù) 與 互為“鏡子”函數(shù).
(1)請直接寫出函數(shù) 的“鏡子”函數(shù)
(2)如果一對“鏡子”函數(shù) 與 的圖象交于點 ,且與 軸交于 、 兩點,如圖所示,若 ,且 的面積是 ,求這對“鏡子”函數(shù)的解析式.
(3)若點 是 軸上的一個動點,當(dāng) 為等腰三角形時,直接寫出點 的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若△ABC的三邊a,b,c滿足(ac)(a2+b2c2)=0,則△ABC是( )
A. 等腰三角形 B. 直角三角形
C. 等腰三角形或直角三角形 D. 等腰直角三角形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點在函數(shù)()的圖象上,點在直線(為常數(shù),且)上,若,兩點關(guān)于原點對稱,則稱點,為函數(shù),圖象上的一對“友好點”.請問這兩個函數(shù)圖象上的“友好點”對數(shù)的情況為
A.有對或對 B.只有對 C.只有對 D.有對或對
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某旅游景點的門票售價為:成人票每張50元,兒童票每張30元,如果某日該景點售出門票100張,門票收入共4000元,那么當(dāng)日售出成人票張.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com