【題目】如圖,點O為矩形ABCD對角線交點,,,點E、F、G分別從D,C,B三點同時出發(fā),沿矩形的邊DC、CB、BA勻速運動,點E的運動速度為,點F的運動速度為,點G的運動速度為,當(dāng)點F到達點點F與點B重合時,三個點隨之停止運動在運動過程中,關(guān)于直線EF的對稱圖形是設(shè)點E、F、G運動的時間為單位:
當(dāng)______s時,四邊形為正方形;
若以點E、C、F為頂點的三角形與以點F、B、G為頂點的三角形相似,求t的值;
是否存在實數(shù)t,使得點與點O重合?若存在,直接寫出t的值;若不存在,請說明理由.
【答案】(1)(2)當(dāng)或時,以點E、C、F為頂點的三角形與以點F,B,G為頂點的三角形相似(3)不存在實數(shù)t,使得點與點O重合
【解析】
利用正方形的性質(zhì),得到,列一元一次方程求解即可;
與相似,分兩種情況,需要分類討論,逐一分析計算;
本問為存在型問題假設(shè)存在,則可以分別求出在不同條件下的t值,它們互相矛盾,所以不存在.
若四邊形為正方形,則,,,
即:,
解得,
故答案為:;
分兩種情況,討論如下:
若∽,
則有,即,
解得:;
若∽,
則有,即,
解得:不合題意,舍去或.
當(dāng)或時,以點E、C、F為頂點的三角形與以點F,B,G為頂點的三角形相似.
假設(shè)存在實數(shù)t,使得點與點O重合.
如圖1,過點O作于點M,則在中,,,,
由勾股定理得:,
即:
解得:;
過點O作于點N,則在中,,,,
由勾股定理得:,
即:
解得:.
,
不存在實數(shù)t,使得點與點O重合.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某大學(xué)生創(chuàng)業(yè)團隊抓住商機,購進一批干果分裝成營養(yǎng)搭配合理的小包裝后出售,每袋成本3元.試銷期間發(fā)現(xiàn)每天的銷售量y(袋)與銷售單價x(元)之間滿足一次函數(shù)關(guān)系,部分數(shù)據(jù)如表所示,其中3.5≤x≤5.5,另外每天還需支付其他費用80元.
(1)請直接寫出y與x之間的函數(shù)關(guān)系式;
(2)如果每天獲得160元的利潤,銷售單價為多少元?
(3)設(shè)每天的利潤為w元,當(dāng)銷售單價定為多少元時,每天的利潤最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形中,點,分別在,上,且為等邊三角形,下列結(jié)論:
①;②;③;④.
其中正確的結(jié)論個數(shù)有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把和按如圖擺放(點與重合),點、、在同一條直線上.已知:,,,,.如圖,從圖的位置出發(fā),以的速度沿向勻速移動,在移動的同時,點從的頂點出發(fā),以的速度沿向點勻速移動;當(dāng)點移動到點時,點停止移動,也隨之停止移動.與交于點,連接,設(shè)移動時間為.
用含的代數(shù)式表示線段和的長,并寫出的取值范圍;
當(dāng)為何值時,是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校九年級學(xué)生開展踢毽子比賽活動,每班派5名學(xué)生參加,按團體總分多少排列名次,在規(guī)定時間內(nèi)每人踢100個以上(含100個)為優(yōu)秀.下表是成績最好的甲班和乙班5名學(xué)生的比賽數(shù)據(jù)(單位:個):
1號 | 2號 | 3號 | 4號 | 5號 | 總成績 | |
甲班 | 100 | 98 | 110 | 89 | 103 | 500 |
乙班 | 89 | 100 | 95 | 119 | 97 | 500 |
經(jīng)統(tǒng)計發(fā)現(xiàn)兩班總成績相等,只好將數(shù)據(jù)中的其他信息作為參考.根據(jù)要求回答下列問題:
(1)計算兩班的優(yōu)秀率;
(2)求兩班比賽數(shù)據(jù)的中位數(shù);
(3)求兩班比賽數(shù)據(jù)的方差;
(4)根據(jù)以上三條信息,你認為應(yīng)該把冠軍獎狀發(fā)給哪一個班級?簡述理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,過點B作射線BB1∥AC.動點D從點A出發(fā)沿射線AC方向以每秒5個單位的速度運動,同時動點E從點C沿射線AC方向以每秒3個單位的速度運動.過點D作DH⊥AB于H,過點E作EF⊥AC交射線BB1于F,G是EF中點,連接DG.設(shè)點D運動的時間為t秒.
(1)當(dāng)t為何值時,AD=AB,并求出此時DE的長度;
(2)當(dāng)△DEG與△ACB相似時,求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2019年11月20日-23日,首屆世界大會在北京舉行.某校的學(xué)生開展對于知曉情況的問卷調(diào)查,問卷調(diào)查的結(jié)果分為、、、四類,其中類表示“非常了解”,類表示“比較了解”,類表示“基本了解”,類表示“不太了解”,并把調(diào)查結(jié)果繪制成如圖所示的兩個統(tǒng)計圖表(不完整).
根據(jù)上述信息,解答下列問題:
(1)這次一共調(diào)查了多少人;
(2)求“類”在扇形統(tǒng)計圖中所占圓心角的度數(shù);
(3)請將條形統(tǒng)計圖補充完整.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com