【題目】如圖,在平面直角坐標系xOy中,A(0,5),直線x=-5與x軸交于點D,直線y=-x-與x軸及直線x=-5分別交于點C,E.點B,E關(guān)于x軸對稱,連接AB.
(1)求點C,E的坐標及直線AB的解析式;
(2)若S=S△CDE+S四邊形ABDO,求S的值;
(3)在求(2)中S時,嘉琪有個想法:“將△CDE沿x軸翻折到△CDB的位置,而△CDB與四邊形ABDO拼接后可看成△AOC,這樣求S便轉(zhuǎn)化為直接求△AOC的面積,如此不更快捷嗎?”但大家經(jīng)反復(fù)驗算,發(fā)現(xiàn)S△AOC≠S,請通過計算解釋他的想法錯在哪里.
【答案】(1)C(-13,0),E(-5,-3), y=x+5;(2)32;(3)答案見解析
【解析】試題分析:
(1)在y=-x- 中,由y=0解得對應(yīng)的x的值即可得到點C的坐標;在y=-x- 中,由x=-5求得對應(yīng)的y的值即可得到點E的坐標,結(jié)合點B和點E關(guān)于x軸對稱可得點B的坐標,結(jié)合點A的坐標即可求得直線AB的解析式;
(2)由點C、E、B、A的坐標結(jié)合圖形分別求出△CDE和四邊形ABDO的面積相加即可得到S的值;
(3)由已知條件計算出△AOC的面積與(2)中結(jié)果對比即可說明他的說法是錯誤的,理由是由(1)可知AB的解析式為y=x+5,將點C的坐標代入檢驗,即可發(fā)現(xiàn)點C不在直線AB上,由此可知他的計算方法是錯誤的.
試題解析:
(1)在直線y=-x-中,
令y=0,則有0=-x-,
∴x=-13,
∴C(-13,0).
令x=-5,
則有y=-×(-5)-=-3,
∴E(-5,-3).
∵點B,E關(guān)于x軸對稱,
∴B(-5,3).
∵A(0,5),
∴設(shè)直線AB的解析式為y=kx+5,
∴-5k+5=3,
∴k=,
∴直線AB的解析式為y=x+5.
(2)由(1)知E(-5,-3),
∴DE=3.
∵C(-13,0),
∴CD=-5-(-13)=8,
∴S△CDE=CD·DE=12.
由題意知OA=5,OD=5,BD=3,
∴S四邊形ABDO= (BD+OA)·OD=20,
∴S=S△CDE+S四邊形ABDO=12+20=32.
(3)由(2)知S=32,在△AOC中,OA=5,OC=13,
∴S△AOC=OA·OC==32.5,
∴S≠S△AOC.
理由:由(1)知直線AB的解析式為y=x+5,
令y=0,則0=x+5,
∴x=-≠-13,
∴點C不在直線AB上,即點A,B,C不在同一條直線上,
∴S△AOC≠S.
科目:初中數(shù)學 來源: 題型:
【題目】五一節(jié),小麗獨自一人去老家玩,家住在車站附近的姑姑到車站去接小麗.因為擔心小麗下車后找不到路,姑姑一路小跑來到車站,結(jié)果客車晚點,休息一陣后,姑姑接到小麗,和小麗一起慢慢的走回了家.下列圖象中,能反映以上過程中小麗姑姑離家的距離s與時間t的關(guān)系的大致圖象是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知△AOB是等邊三角形,點A的坐標是(0,4),點B在第一象限,點P是x軸上的一個動點,連接AP,并把△AOP繞著點A按逆時針方向旋轉(zhuǎn),使邊AO與AB重合,得到△ABD.
(1)求B的坐標;
(2)當點P運動到點(t,0)時,試用含t的式子表示點D的坐標;
(3)是否存在點P,使△OPD的面積等于 ,若存在,請求出符合條件的點P的坐標(直接寫出結(jié)果即可)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,P為∠AOB內(nèi)一定點,M,N分別是射線OA,OB上一點,當△PMN周長最小時,∠OPM=50°,則∠AOB=___________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在彈性限度內(nèi),彈簧掛上物體后會伸長,測得一彈簧的長度y(cm)與所掛物體的質(zhì)量x(kg)之間的關(guān)系如下表,下列說法不正確的是( )
x/kg | 0 | 1 | 2 | 3 | 4 | 5 |
y/cm | 20 | 20.5 | 21 | 21.5 | 22 | 22.5 |
A. x與y都是變量,且x是自變量,y是x的函數(shù)
B. 彈簧不掛重物時的長度為0 cm
C. 物體質(zhì)量每增加1 kg,彈簧長度y增加0.5 cm
D. 所掛物體質(zhì)量為7 kg時,彈簧長度為23.5 cm
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某人從A城出發(fā),前往距離A城30千米的B城.現(xiàn)在有三種方案供他選擇:
①騎自行車,其速度為15千米/時;
②蹬三輪車,其速度為10千米/時;
③騎摩托車,其速度為40千米/時.
(1)選擇哪種方式能使他從A城到達B城的時間不超過2小時?請說明理由;
(2)設(shè)此人在行進途中離B城的距離為s(千米),行進時間為t(時),就(1)所選定的方案,試寫出s與t之間的函數(shù)關(guān)系式(注明自變量t的取值范圍),并在如圖所示的平面直角坐標系中畫出函數(shù)的圖象.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在平面直角坐標系中,半徑均為1個單位長度的半圓O1,O2,O3,…組成一條平滑的曲線,點P從原點O出發(fā),沿這條曲線向右運動,速度為每秒個單位長度,則第2019秒時,點P的坐標是( )
A. (2019,0) B. (2019,-1) C. (2019,1) D. (2018,0)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形網(wǎng)絡(luò)中,△ABC的三個頂點都在格點上,點A、B、C的坐標分別為(﹣2,4)、(﹣2,0)、(﹣4,1),將△ABC繞原點O旋轉(zhuǎn)180度得到△A1B1C1 . 結(jié)合所給的平面直角坐標系解答下列問題:
(1)畫出△A1B1C1;
(2)畫出一個△A2B2C2 , 使它分別與△ABC,△A1B1C1軸對軸(其中點A,B,C與點A2 , B2 , C2對應(yīng));
(3)在(2)的條件下,若過點B的直線平分四邊形ACC2A2的面積,請直接寫出該直線的函數(shù)解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,∠A=65°,∠B=75°,將△ABC沿EF對折,使C點與C′點重合.當∠1=45°時,∠2=________°.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com