【題目】如圖,在矩形ABCD中,AB=6cm,BC=4cm.動點E從點B出發(fā),沿著線路BC→CD→DA運動,在BC段的平均速度是1cm/s,在CD段的平均速度是2cm/s,在DA段的平均速度是4cm/s,到點A停止.設(shè)△ABE的面積為y(cm2),則y與點E的運動時間t(s)的函數(shù)關(guān)系圖象大致是( )
A.
B.
C.
D.
【答案】C
【解析】解:分三種情況:
①動點E從點B出發(fā),在BC上運動.
∵BC=4cm,動點E在BC段的平均速度是1cm/s,
∴動點E在BC段的運動時間為:4÷1=4(s).
∵y= ABBE= ×6×t=3t,
∴y=3t(0≤t≤4),
∴當0≤t≤4時,y隨t的增大而增大,故排除A、B;
②動點E在CD上運動.
∵CD=AB=6cm,動點E在CD段的平均速度是2cm/s,
∴動點E在CD段的運動時間為:6÷2=3(s).
∵y= ABBC= ×6×4=12,
∴y=12(4<t≤7),
∴當4<t≤7時,y=12;
③動點E在DA上運動.
∵DA=BC=4cm,動點E在DA段的平均速度是4cm/s,
∴動點E在DA段的運動時間為:4÷4=1(s).
∵y= ABAE= ×6×[4﹣4(t﹣7)]=96﹣12t,
∴y=96﹣12t(7<t≤8),
∴當7<t≤8時,y隨t的增大而減小,故排除D.
綜上可知C選項正確.
故選C.
求△ABE的面積y時,可把AB看作底邊,E到AB的垂線段看作高.分三種情況:①動點E從點B出發(fā),在BC上運動;②動點E在CD上運動;③動點E在DA上運動.分別求出每一種情況下,△ABE的面積y(cm2)點E的運動時間t(s)的函數(shù)解析式,再結(jié)合自變量的取值范圍即可判斷.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,∠BAC=120°,EF為AB的垂直平分線,EF交BC于F,交AB于E,BF=5cm,求CF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列各式計算正確的是( )
A. 3x+x=3x2B. ﹣2a+5b=3ab
C. 4m2n+2mn2=6mnD. 3ab2﹣5b2a=﹣2ab2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某江段江水流經(jīng)B,C,D三點拐彎后與原來流向相同,如圖,若∠ABC=120°,∠BCD=80°,則∠EDC=___________°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知M(a,b)是平面直角坐標系xOy中的點,其中a是從l,2,3,4三個數(shù)中任取的一個數(shù),b是從l,2,3,4,5五個數(shù)中任取的一個數(shù).定義“點M(a,b)在直線x+y=n上”為事件Qn(2≤n≤9,n為整數(shù)),則當Qn的概率最大時,n的所有可能的值為( )
A.5
B.4或5
C.5或6
D.6或7
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線y1=x,y2= x+1,y3=﹣ x+5的圖象如圖所示,若無論x取何值,y總?cè)1 , y2 , y3中的最小值,則y的最大值為
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次射擊比賽中,某運動員前6次射擊共中53環(huán),如果他要打破89環(huán)(10次射擊)的記錄,那么第7次射擊他至少要打出______環(huán)的成績.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com