【題目】今年我國和俄羅斯聯(lián)合軍事演習(xí)中,一核潛艇在海下時而上升,時而下降.核潛艇的初始位置在海平面下500米,下面是核潛艇在某段時間內(nèi)運動情況(把上升記為“+”下降記為“﹣”,單位:米):﹣280,﹣50,40,30,﹣40,75,﹣55
(1)現(xiàn)在核潛艇處在什么位置(海平面下多少米)?
(2)假如核潛艇每上升或下降1米核動力裝置所提供的能量相當(dāng)于20升汽油燃燒所產(chǎn)生的能量,那么在這一時刻內(nèi)核動力裝置所提供的能量相當(dāng)于多少升汽油燃燒所產(chǎn)生的能量?
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為了豐富學(xué)生課余生活,開展了“第二課堂”的活動,推出了以下四種選修課程:A.繪畫;B.唱歌;C.演講;D.十字繡.學(xué)校規(guī)定:每個學(xué)生都必須報名且 只能選擇其中的一個課程.學(xué)校隨機抽查了部分學(xué)生,對他們選擇的課程情況進(jìn)行了統(tǒng)計, 并繪制了如下兩幅不完整的統(tǒng)計圖.請結(jié)合統(tǒng)計圖中的信息,解決下列問題:
(1)這次學(xué)校抽查的學(xué)生人數(shù)是 ,C 所占圓心角為 ;
(2)將條形統(tǒng)計圖補充完整;
(3)如果該校共有1000名學(xué)生,請你估計該校報D的學(xué)生約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC,分別以BC,AB,AC為邊作等邊三角形BCE,ACF,ABD
(1)若存在四邊形ADEF,判斷它的形狀,并說明理由.
(2)存在四邊形ADEF的條件下,請你給△ABC添個條件,使得四邊形ADEF成為矩形,并說明理由.
(3)當(dāng)△ABC滿足什么條件時四邊形ADEF不存在.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為圓O的直徑,C為圓O上一點,D為BC延長線一點,且BC=CD,CE⊥AD于點E.
(1)求證:直線EC為圓O的切線;
(2)設(shè)BE與圓O交于點F,AF的延長線與CE交于點P,已知∠PCF=∠CBF,PC=5,PF=4,求sin∠PEF的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩個工程隊分別同時開挖兩段河渠,所挖河渠的長度y(m)與挖掘時間x(h)之間的關(guān)系如圖所示,請根據(jù)圖象所提供的信息解答下列問題:
(1)乙隊開挖到30m時,用了_____ h. 開挖6h時甲隊比乙隊多挖了____ m;
(2)請你求出:
①甲隊在的時段內(nèi),y與x之間的函數(shù)關(guān)系式;
②乙隊在的時段內(nèi),y與x之間的函數(shù)關(guān)系式;
(3)當(dāng)x 為何值時,甲、 乙兩隊在 施工過程中所挖河渠的長度相等?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校要舉辦一次演講比賽,每班只能選一人參加比賽.但八年級一班共有甲、乙兩人的演講水平相不相上下,現(xiàn)要在他們兩人中選一人去參加全校的演講比賽,經(jīng)班主任與全班同學(xué)協(xié)商決定用摸小球的游戲來確定誰去參賽(勝者參賽).
游戲規(guī)則如下:在兩個不透明的盒子中,一個盒子里放著兩個紅球,一個白球;另一個盒子里放著三個白球,一個紅球,從兩個盒子中各摸一個球,若摸得的兩個球都是紅球,甲勝;摸得的兩個球都是白球,乙勝,否則,視為平局.若為平局,繼續(xù)上述游戲,直至分出勝負(fù)為止.
根據(jù)上述規(guī)則回答下列問題:
(1)從兩個盒子各摸出一個球,一個球為白球,一個球為紅球的概率是多少?
(2)該游戲公平嗎?請用列表或樹狀圖等方法說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠ACB的平分線與∠ABC的外角平分線交于E點,則∠AEB的度數(shù)為( ).
A. 50°B. 45°C. 40°D. 35°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在已知的△ABC中,按以下步驟作圖:①分別以B,C為圓心,以大于BC的長為半徑作弧,兩弧相交于兩點M,N;②作直線MN交AB于點D,連接CD.若CD=AC,∠A=50°,則∠ACB的度數(shù)為( )
A. 90°B. 95°C. 100°D. 105°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點和點在數(shù)軸上對應(yīng)的數(shù)分別為和,且.
(1)線段的長為 ;
(2)點在數(shù)軸上所對應(yīng)的數(shù)為,且是方程的解,在線段上是否存在點使得?若存在,請求出點在數(shù)軸上所對應(yīng)的數(shù),若不存在,請說明理由;
(3)在(2)的條件下,線段和分別以6個單位長度/秒和5個單位長度/秒的速度同時向右運動,運動時間為秒,點為線段的中點,點為線段的中點,若,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com