【題目】如圖,拋物線與x軸交于點(diǎn)A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B左邊),與y軸交于點(diǎn)C.
(1)求A,B兩點(diǎn)的坐標(biāo).
(2)點(diǎn)P是線段BC下方的拋物線上的動(dòng)點(diǎn),連結(jié)PC,PB.
①是否存在一點(diǎn)P,使△PBC的面積最大,若存在,請(qǐng)求出△PBC的最大面積;若不存在,試說(shuō)明理由.
②連結(jié)AC,AP,AP交BC于點(diǎn)F,當(dāng)∠CAP=∠ABC時(shí),求直線AP的函數(shù)表達(dá)式.
【答案】(1)A、B的坐標(biāo)分別為(﹣1,0)、(4,0);(2)①存在,見(jiàn)解析,面積的最大值為4,②.
【解析】
(1)令y=0,則x=1或-4,令x=0,則y=2,即可求解;
(2)①S△PBC=×PH×OB,即可求解;
②證明△ACF∽△BCA,求得:CF=,BF=BC-CF=,由BF2=(m-4)2+(m-2)2=()2,即可求解.
(1)令y=0,則x=1或﹣4,令x=0,則y=2,
即點(diǎn)A、B、C的坐標(biāo)分別為(﹣1,0)、(4,0)、(0,﹣2);
(2)①存在,理由:過(guò)點(diǎn)P作HP∥y軸交BC于點(diǎn)H,
將點(diǎn)B、C的坐標(biāo)代入一次函數(shù)表達(dá)式y=kx+b得:,解得:,
故直線BC的表達(dá)式為:y=x﹣2,
設(shè)點(diǎn)P坐標(biāo)為(x,)、H(x,x﹣2),
S△PBC=×PH×OB=×(x﹣2)×4=﹣x2+4x,
∵﹣1<0,故S△PBC有最大值,
當(dāng)x=2時(shí),面積的最大值為4,此時(shí)點(diǎn)P(2,﹣3);
②∠CAP=∠ABC,∠ACF=∠ACF,∴△ACF∽△BCA,
∴AC2=BCCF,其中AC=,BC=2,
故:CF=,BF=BC﹣CF=,
設(shè)點(diǎn)F的坐標(biāo)為(m,m﹣2),
則:BF2=(m﹣4)2+(m﹣2)2=()2,
解得:m=1或7(舍去m=7),
故點(diǎn)F坐標(biāo)(1,﹣),
將點(diǎn)A、F坐標(biāo)代入一次函數(shù)表達(dá)式y=kx+b,
同理可得:直線AF(或直線AP)的表達(dá)式為:y=﹣x﹣.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=60°,AC=2,D是AB邊上一個(gè)動(dòng)點(diǎn)(不與點(diǎn)A、B重合),E是BC邊上一點(diǎn),且∠CDE=30°.設(shè)AD=x,BE=y,則下列圖象中,能表示y與x的函數(shù)關(guān)系的圖象大致是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)是(1,3),將點(diǎn)A繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到點(diǎn)A′,則點(diǎn)A′的坐標(biāo)是( )
A. (-3,1) B. (3,-1) C. (-1,3) D. (1,-3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,AD⊥BC于點(diǎn)D,BC=10cm,AD=8cm,E點(diǎn)F點(diǎn)分別為AB,AC的中點(diǎn).
(1)求證:四邊形AEDF是菱形;
(2)求菱形AEDF的面積;
(3)若H從F點(diǎn)出發(fā),在線段FE上以每秒2cm的速度向E點(diǎn)運(yùn)動(dòng),點(diǎn)P從B點(diǎn)出發(fā),在線段BC上以每秒3cm的速度向C點(diǎn)運(yùn)動(dòng),問(wèn)當(dāng)t為何值時(shí),四邊形BPHE是平行四邊形?當(dāng)t取何值時(shí),四邊形PCFH是平行四邊形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】折紙飛機(jī)是我們兒時(shí)快樂(lè)的回憶,現(xiàn)有一張長(zhǎng)為290mm,寬為200mm的白紙,如圖所示,以下面幾個(gè)步驟折出紙飛機(jī):(說(shuō)明:第一步:白紙沿著EF折疊,AB邊的對(duì)應(yīng)邊A′B′與邊CD平行,將它們的距離記為x;第二步:將EM,MF分別沿著MH,MG折疊,使EM與MF重合,從而獲得邊HG與A′B′的距離也為x),則PD=______mm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,一個(gè)扇形紙片的圓心角為90°,半徑為6.如圖2,將這張扇形紙片折疊,使點(diǎn)A與點(diǎn)O恰好重合,折痕為CD,圖中陰影為重合部分,則陰影部分的面積為( )
A. 6π﹣B. 6π﹣9C. 12π﹣D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)用24000元購(gòu)入一批空調(diào),然后以每臺(tái)3000元的價(jià)格銷(xiāo)售,因天氣炎熱,空調(diào)很快售完;商場(chǎng)又以52000元的價(jià)格再次購(gòu)入該種型號(hào)的空調(diào),數(shù)量是第一次購(gòu)入的2倍,但購(gòu)入的單價(jià)上調(diào)了200元,售價(jià)每臺(tái)也上調(diào)了200元.
(1)商場(chǎng)第一次購(gòu)入的空調(diào)每臺(tái)進(jìn)價(jià)是多少元?
(2)商場(chǎng)既要盡快售完第二次購(gòu)入的空調(diào),又要在這兩次空調(diào)銷(xiāo)售中獲得的利潤(rùn)率不低于22%,打算將第二次購(gòu)入的部分空調(diào)按每臺(tái)九五折出售,最多可將多少臺(tái)空調(diào)打折出售?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,點(diǎn)E是BC的中點(diǎn),AE交BD于點(diǎn)F,BH⊥AE于點(diǎn)G,連接OG,則下列結(jié)論中①OF=OH,②△AOF∽△BGF,③tan∠GOH=2,④FG+CH=GO,正確的個(gè)數(shù)是( 。
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,已知△ABC與△DEF均為等邊三角形,且AB=2,DB=1,現(xiàn)△ABC靜止不動(dòng),△DEF沿著直線EC以每秒1個(gè)單位的速度向右移動(dòng)設(shè)△DEF移動(dòng)的時(shí)間為x,△DEF與△ABC重合的面積為y,則能大致反映y與x函數(shù)關(guān)系的圖象是( 。
A.B.
C.D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com