【題目】如圖,已知⊙的直徑,為圓周上兩點,且四邊形是平行四邊形,直線切⊙于點,分別交的延長線于點交于.

(1)求證:;

(2)的長.

【答案】(1)證明見解析;(2)AE=.

【解析】

1)利用圓周角定理得到∠DBC=90°,再利用平行四邊形的性質(zhì)得AOBC,所以BDOA,再根據(jù)切線的性質(zhì)得出OAEF,所以OAEF,于是得到EFBD

2)連接OB,如圖,利用平行四邊形的性質(zhì)得OA=BC,則OB=OC=BC,于是可判斷△OBC為等邊三角形,所以∠C=60°,易得∠AOE=C=60°,然后在RtOAE中利用正切的定義可求出AE的長.

解:(1) :∵CD為直徑,

∴∠DBC=90°,

BDBC,

∵四邊形OABC是平行四邊形,

AOBC,

BDOA

∵直線EF切⊙O于點A,

OAEF,

EFBD;

(2)連接,

∵四邊形OABC是平行四邊形,

OA=BC,

OB=OC=OA

OB=OC=BC,

∴△OBC為等邊三角形,

∴∠C=60°,

∴∠AOE=C=60°,

RtOAE中,,

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線lx軸交于點B1,以OB1為邊長作等邊△A1OB1,過點A1A1B2平行于x軸,交直線l于點B2,以A1B2為邊長作等邊△A2A1B2,過點A2A2B3平行于x軸,交直線l于點B3,以A2B3為邊長作等邊△A3A2B3,…,則點A2 018的橫坐標(biāo)是_____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD中,ACBD為對角線,BC=3BC邊上的高為2,則陰影部分的面積為(

A. 3B. 4C. 6D. 12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,四邊形是正方形,且,點重合,以為圓心,作半徑長為5的半圓,交于點,交于點,交的延長線于點.

發(fā)現(xiàn)是半圓上任意一點,連接,則的最大值為______;

思考如圖2,將半圓繞點逆時針旋轉(zhuǎn),記旋轉(zhuǎn)角為

1)當(dāng)時,求半圓落在正方形內(nèi)部的弧長;

2)在旋轉(zhuǎn)過程中,若半圓與正方形的邊相切時,請直接寫出此時點到切點的距離.(注:,,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,過點于點,點是線段上一動點,過三點于點,過點的延長線于點,交于點.

1)求證:四邊形為平行四邊形.

2)當(dāng)時,求的長.

3)在點整個運動過程中,

①當(dāng)中滿足某兩條線段相等,求所有滿足條件的的長.

②當(dāng)點三點共線時,于點,記的面積為,的面積為,求的值. (請直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A,B在反比例函數(shù)的圖象上,點C,D在反比例函數(shù)的圖象上,AC//BD//y軸,已知點A,B的橫坐標(biāo)分別為1,2,OACABD的面積之和為,則的值為( )

A. 3 B. 4 C. 2 D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形紙片中,,折疊紙片使點落在邊上的處,折痕為.過點,連接.

1)求證:四邊形為菱形;

2)當(dāng)點邊上移動時,折痕的端點也隨之移動.

①當(dāng)點與點重合時(如圖),求菱形的邊長;

②若限定,分別在邊,上移動,求出點在邊上移動的最大距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=5,AD=3,動點P在直線AB上方,且滿足SPABS矩形ABCD=13,則使△PAB為直角三角形的點P(  )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的角平分線, ,延長線上,且,若,則的長為______.

查看答案和解析>>

同步練習(xí)冊答案