【題目】在矩形ABCD中,∠B的角平分線BEAD交于點(diǎn)E,BED的角平分線EFDC交于點(diǎn)F,若AB=9,DF=2FC,則BC=____.(結(jié)果保留根號(hào))

【答案】

【解析】試題分析:延長(zhǎng)EFBC,交于點(diǎn)G矩形ABCD中,∠B的角平分線BEAD交于點(diǎn)E,∴∠ABE=∠AEB=45°,∴AB=AE=9,直角三角形ABE中,BE==,又∵∠BED的角平分線EFDC交于點(diǎn)F,∴∠BEG=∠DEF

∵AD∥BC∴∠G=∠DEF,∴∠BEG=∠G,∴BG=BE=

∠G=∠DEF,∠EFD=∠GFC,可得△EFD∽△GFC,.

設(shè)CG=xDE=2x,則AD=9+2x=BC

∵BG=BC+CG,=9+2x+x,解得x=,∴BC=9+2=

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,四邊形ABCD中,AB=4,BC=3,AD=13,CD=12,B=90°,求該四邊形的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一條光纖線路從A地到B地需要經(jīng)過C地,圖中AC=40千米,∠CAB=30°,CBA=45°,求AB的距離.(1.41, 1.73,結(jié)果取整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中放置一菱形OABC,已知∠ABC60°,OA1.現(xiàn)將菱形OABC沿x軸的正方向無滑動(dòng)翻轉(zhuǎn),每次翻轉(zhuǎn)60°,連續(xù)翻轉(zhuǎn)2018次,點(diǎn)B的落點(diǎn)依次為,,,, ……,則的坐標(biāo)為________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在菱形ABCD中,點(diǎn)E,O,F(xiàn)分別為AB,AC,AD的中點(diǎn),連接CE,CF,OE,OF.

(1)求證:△BCE≌△DCF;

(2)當(dāng)AB與BC滿足什么關(guān)系時(shí),四邊形AEOF是正方形?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,過點(diǎn)A2,0)的兩條直線分別交軸于B,C,其中點(diǎn)B在原點(diǎn)上方,點(diǎn)C在原點(diǎn)下方,已知AB=.

1)求點(diǎn)B的坐標(biāo);

2)若△ABC的面積為4,求的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知反比例函數(shù)的圖象經(jīng)過點(diǎn),過點(diǎn)A軸于點(diǎn)B,連結(jié)

1)求k的值;

2)如圖,若直線經(jīng)過點(diǎn)A,與x軸相交于點(diǎn)C,且滿足.求:

①直線的表達(dá)式;

②記直線與雙曲線的另一交點(diǎn)為,試求的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)y=ax2+bx+c的圖象過A(2,0), B(0,﹣1)和C(4,5)三點(diǎn).

(1)求二次函數(shù)的解析式;

(2)設(shè)二次函數(shù)的圖象與x軸的另一個(gè)交點(diǎn)為D,求點(diǎn)D的坐標(biāo);

(3)在同一坐標(biāo)系中畫出直線y=x+1,并寫出當(dāng)x在什么范圍內(nèi)時(shí),一次函數(shù)的值大于二次函數(shù)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形A1A2A3A4,A5A6A7A8,A9A10A11A12,…(每個(gè)正方形從第三象限的頂點(diǎn)開始,按順時(shí)針方向順序,依次記為A1,A2,A3,A4;A5,A6,A7,A8;A9,A10,A11,A12;…)的中心均在坐標(biāo)原點(diǎn)O,各邊均與x軸或y軸平行,若它們的邊長(zhǎng)依次是2,4,6,…,則頂點(diǎn)A20的坐標(biāo)為 (  )

A. (5,5) B. (5,-5) C. (-5,5) D. (-5,-5)

查看答案和解析>>

同步練習(xí)冊(cè)答案