【題目】如圖,頂點(diǎn)為的拋物線與軸交于,兩點(diǎn),與軸交于點(diǎn),過點(diǎn)作軸交拋物線于另一點(diǎn),作軸,垂足為點(diǎn).雙曲線經(jīng)過點(diǎn),連接,.
(1)求拋物線的表達(dá)式;
(2)點(diǎn),分別是軸,軸上的兩點(diǎn),當(dāng)以,,,為頂點(diǎn)的四邊形周長最小時(shí),求出點(diǎn),的坐標(biāo);
【答案】(1);(2);;
【解析】
(1)先求D的坐標(biāo),再代入二次函數(shù)解析式解析式求解;(2)分別作點(diǎn),關(guān)于軸,軸的對稱點(diǎn),,連接交軸,軸于點(diǎn),.即,F,N,在同同一直線上時(shí),四邊形的周長最小,用待定系數(shù)法求直線的表達(dá)式,再求N,F的坐標(biāo);
解:(1)由題意,得點(diǎn)的坐標(biāo),.
∵,
∴.
∴點(diǎn)的坐標(biāo).
將點(diǎn),分別代人拋物線,得
解得
∴拋物線的表達(dá)式為.
(2)分別作點(diǎn),關(guān)于軸,軸的對稱點(diǎn),,
連接交軸,軸于點(diǎn),.
由拋物線的表達(dá)式可知,頂點(diǎn)的坐標(biāo),
∴點(diǎn)的坐標(biāo).
設(shè)直線為,
∵點(diǎn)的坐標(biāo),
∴
解得
∴直線的表達(dá)式為.
令,則,解得,
∴點(diǎn)的坐標(biāo).
令,則,
∴點(diǎn)的坐標(biāo).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,以點(diǎn)(3,-5)為圓心,r為半徑的圓上有且僅有兩點(diǎn)到x軸所在直線的距離等于1,則圓的半徑r的取值范圍是 ( )
A.r>4 B.0<r<6 C.4≤r<6 D.4<r<6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+2x+c與x軸交于A(﹣1,0)B(3,0)兩點(diǎn),與y軸交于點(diǎn)C.
(1)求拋物線y=ax2+2x+c的解析式:;
(2)點(diǎn)D為拋物線上對稱軸右側(cè)、x軸上方一點(diǎn),DE⊥x軸于點(diǎn)E,DF∥AC交拋物線對稱軸于點(diǎn)F,求DE+DF的最大值;
(3)①在拋物線上是否存在點(diǎn)P,使以點(diǎn)A,P,C為頂點(diǎn),AC為直角邊的三角形是直角三角形?若存在,請求出符合條件的點(diǎn)P的坐標(biāo);若不存在,請說明理由;
②點(diǎn)Q在拋物線對稱軸上,其縱坐標(biāo)為t,請直接寫出△ACQ為銳角三角形時(shí)t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD是BC邊上的中線,點(diǎn)E是AD的中點(diǎn),連接BE,過點(diǎn)A作BC的平行線交BE的延長線于點(diǎn)F,連接CF.
(1)求證:AF=DC;
(2)在不添加任何輔助線的情況下,請直接寫出圖中四個(gè)三角形,使寫出的每個(gè)三角形的面積等于△AEF面積的2倍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=-x2+1,下列結(jié)論:
①拋物線開口向上;
②拋物線與x軸交于點(diǎn)(-1,0)和點(diǎn)(1,0);
③拋物線的對稱軸是y軸;
④拋物線的頂點(diǎn)坐標(biāo)是(0,1);
⑤拋物線y=-x2+1是由拋物線y=-x2向上平移1個(gè)單位得到的.
其中正確的個(gè)數(shù)有( )
A. 5個(gè)B. 4個(gè)C. 3個(gè)
D. 2個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】十八大以來,某校已舉辦五屆校園藝術(shù)節(jié).為了弘揚(yáng)中華優(yōu)秀傳統(tǒng)文化,每屆藝術(shù)節(jié)上都有一些班級(jí)表演“經(jīng)典誦讀”、“民樂演奏”、“歌曲聯(lián)唱”、“民族舞蹈”等節(jié)目.小穎對每屆藝術(shù)節(jié)表演這些節(jié)目的班級(jí)數(shù)進(jìn)行統(tǒng)計(jì),并繪制了如圖所示不完整的折線統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.
(1)五屆藝術(shù)節(jié)共有________個(gè)班級(jí)表演這些節(jié)日,班數(shù)的中位數(shù)為________,在扇形統(tǒng)計(jì)圖中,第四屆班級(jí)數(shù)的扇形圓心角的度數(shù)為________;
(2)補(bǔ)全折線統(tǒng)計(jì)圖;
(3)第六屆藝術(shù)節(jié),某班決定從這四項(xiàng)藝術(shù)形式中任選兩項(xiàng)表演(“經(jīng)典誦讀”、“民樂演奏”、“歌曲聯(lián)唱”、“民族舞蹈”分別用,,,表示).利用樹狀圖或表格求出該班選擇和兩項(xiàng)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有10個(gè)人圍成一個(gè)圓圈做游戲.游戲的規(guī)則是:每個(gè)人心里都想好一個(gè)數(shù),并把自己想好的數(shù)如實(shí)地告訴他兩旁的兩個(gè)人,然后每個(gè)人將他兩旁的兩個(gè)人告訴他的數(shù)的平均數(shù)報(bào)出來.若報(bào)出來的數(shù)如圖所示,則報(bào)3的人心里想的數(shù)是____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線的頂點(diǎn)為A(1,4),拋物線與y軸交于點(diǎn)B(0,3),與x軸交于C,D兩點(diǎn).點(diǎn)P是x軸上的一個(gè)動(dòng)點(diǎn).
(1)求此拋物線的解析式;
(2)當(dāng)PA+PB的值最小時(shí),求點(diǎn)P的坐標(biāo);
(3)拋物線上是否存在一點(diǎn)Q(Q與B不重合),使△CDQ的面積等于△BCD的面積?若存在,直接寫出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,等腰梯形OABC的底邊OC在x軸上,AB∥OC,O為坐標(biāo)原點(diǎn),OA = AB =BC,∠AOC=60°,連接OB,點(diǎn)P為線段OB上一個(gè)動(dòng)點(diǎn),點(diǎn)E為邊OC中點(diǎn).
(1)連接PA.PE,求證:PA=PE;
(2)連接PC,若PC+PE=2,試求AB的最大值;
(3)在(2)在條件下,當(dāng)AB取最大值時(shí),如圖2,點(diǎn)M坐標(biāo)為(0,-1),點(diǎn)D為線段OC上一個(gè)動(dòng)點(diǎn),當(dāng)D點(diǎn)從O點(diǎn)向C點(diǎn)移動(dòng)時(shí),直線MD與梯形另一邊交點(diǎn)為N,設(shè)D點(diǎn)橫坐標(biāo)為m,當(dāng)△MNC為鈍角三角形時(shí),求m的范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com