在Rt△ABC中,已知∠C=90°,若AB=5,BC=3,則CA=________.

4
分析:已知∠C=90°,即可判定AB為斜邊,在直角三角形ABC中,已知斜邊和一條直角邊的長(zhǎng),根據(jù)勾股定理即可計(jì)算第三邊的長(zhǎng).
解答:∵在Rt△ABC中,∠C=90°,
∴AB為斜邊,三邊滿足BC2+CA2=AB2,
又AB=5,BC=3,
則解得CA=4.
故答案為4.
點(diǎn)評(píng):本題考查了勾股定理在直角三角形中的正確運(yùn)用,本題中正確的運(yùn)用勾股定理求CA是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在Rt△ABC中,已知∠ACB=90°,且CH⊥AB,HE⊥BC,HF⊥AC.
求證:(1)△HEF≌△EHC;
(2)△HEF∽△HBC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在Rt△ABC中,已知∠BCA=90°,∠BAC=30°,AB=6cm.把△ABC以點(diǎn)B為中心逆時(shí)針旋轉(zhuǎn),使點(diǎn)C旋轉(zhuǎn)到AB邊的延長(zhǎng)線上得到Rt△A1BC1
(1)作出Rt△A1BC1(不要求寫(xiě)作法);
(2)用陰影表示旋轉(zhuǎn)過(guò)程中邊AC掃過(guò)的圖形,然后求出它的面積(結(jié)果用π表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在Rt△ABC中,已知∠C=90°,∠A=30°,BD是∠B的平分線,AC=18,則BD的值為( 。
A、3
3
B、9
C、12
D、6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在Rt△ABC中,已知∠ABC=90°,BC=6,以AB為直徑作⊙O,連接OC,過(guò)點(diǎn)C作⊙O的切線CD,D為切點(diǎn),若sin∠OCD=
45
,求直徑AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在Rt△ABC中,已知tanB=2,則sinA的值是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案