【題目】已知等腰△ABC的頂角∠A=36°(如圖).
(1)請(qǐng)用尺規(guī)作圖法作底角∠ABC的平分線BD,交AC于點(diǎn)D(保留作圖痕跡,不要求寫作法);
(2)證明:△ABC∽△BDC.
【答案】
(1)解:如圖,線段BD為所求出;
(2)證明:∵∠A=36°,AB=AC,
∴∠ABC=∠C= (180°﹣36°)=72°.
∵BD平分∠ABC,
∴∠ABD=∠DBC=72°÷2=36°.
∵∠A=∠CBD=36°,∠C=∠C,
∴△ABD∽△BDC.
【解析】(1)利用角平分線的作法作出線段BD即可;(2)先根據(jù)等腰三角形的性質(zhì)得出∠ABC=∠C=72°,再由角平分線的性質(zhì)得出∠ABD的度數(shù),故可得出∠A=∠CBD=36°,∠C=∠C,據(jù)此可得出結(jié)論.
【考點(diǎn)精析】本題主要考查了等腰三角形的性質(zhì)和相似三角形的判定的相關(guān)知識(shí)點(diǎn),需要掌握等腰三角形的兩個(gè)底角相等(簡(jiǎn)稱:等邊對(duì)等角);相似三角形的判定方法:兩角對(duì)應(yīng)相等,兩三角形相似(ASA);直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相似; 兩邊對(duì)應(yīng)成比例且?jiàn)A角相等,兩三角形相似(SAS);三邊對(duì)應(yīng)成比例,兩三角形相似(SSS)才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,DE是AC的垂直平分線,點(diǎn)D在BC上,△ABC的周長(zhǎng)為20cm,△ABD的周長(zhǎng)為12cm,則AE的長(zhǎng)為cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD為⊙O的內(nèi)接四邊形,且對(duì)角線AC為直徑,AD=BC,過(guò)點(diǎn)D作DG⊥AC,垂足為E,DG分別與AB及CB延長(zhǎng)線交于點(diǎn)F、M.
(1)求證:四邊形ABCD是矩形;
(2)若點(diǎn)G為MF的中點(diǎn),求證:BG是⊙O的切線;
(3)若AD=4,CM=9,求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,邊長(zhǎng)為1的正方形ABCD,點(diǎn)M從點(diǎn)A出發(fā)以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)B運(yùn)動(dòng),點(diǎn)N從點(diǎn)A出發(fā)以每秒3個(gè)單位長(zhǎng)度的速度沿A→D→C→B的路徑向點(diǎn)B運(yùn)動(dòng),當(dāng)一個(gè)點(diǎn)到達(dá)點(diǎn)B時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)△AMN的面積為s,運(yùn)動(dòng)時(shí)間為t秒,則能大致反映s與t的函數(shù)關(guān)系的圖象是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知⊙O的直徑AC與弦BD相交于點(diǎn)F,點(diǎn)E是DB延長(zhǎng)線上的一點(diǎn),∠EAB=∠ADB.
(1)求證:AE是⊙O的切線;
(2)已知點(diǎn)B是EF的中點(diǎn),求證:△EAF∽△CBA.
(3)已知AF=4,CF=2,在(2)的條件下,求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB是⊙O的切線,BC為⊙O的直徑,AC與⊙O交于點(diǎn)D,點(diǎn)E為AB的中點(diǎn),PF⊥BC交BC于點(diǎn)G,交AC于點(diǎn)F
(1)求證:ED是⊙O的切線;
(2)求證:△CFP∽△CPD;
(3)如果CF=1,CP=2,sinA= ,求O到DC的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形ABCD的對(duì)角線AC、BD相交于點(diǎn)O,過(guò)點(diǎn)D作DE∥AC且DE= AC,連接AE交OD于點(diǎn)F,連接CE、OE.
(1)求證:OE=CD;
(2)若菱形ABCD的邊長(zhǎng)為2,∠ABC=60°,求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O的半徑為4cm,直線l與⊙O相交于A、B兩點(diǎn),AB=4 cm,P為直線l上一動(dòng)點(diǎn),以1cm為半徑的⊙P與⊙O沒(méi)有公共點(diǎn).設(shè)PO=dcm,則d的范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在梯形ABCD中,AD∥BC,AB=DC,AC與BD相交于P.已知A(2,3),B(1,1),D(4,3),則點(diǎn)P的坐標(biāo)為( , ).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com