【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=4cm,BC=3cm,⊙O為△ABC的內(nèi)切圓.
(1)求⊙O的半徑;
(2)點(diǎn)P從點(diǎn)B沿邊BA向點(diǎn)A以1cm/s的速度勻速運(yùn)動(dòng),以P為圓心,PB長(zhǎng)為半徑作圓,設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t s,若⊙P與⊙O相切,求t的值.
【答案】
(1)解:如圖1,設(shè)⊙O與AB、BC、CA的切點(diǎn)分別為D、E、F,連接OD、OE、OF,
則AD=AF,BD=BE,CE=CF.
∵⊙O為△ABC的內(nèi)切圓,
∴OF⊥AC,OE⊥BC,即∠OFC=∠OEC=90°.
∵∠C=90°,
∴四邊形CEOF是矩形,
∵OE=OF,
∴四邊形CEOF是正方形.
設(shè)⊙O的半徑為rcm,則FC=EC=OE=rcm,
在Rt△ABC中,∠ACB=90°,AC=4cm,BC=3cm,
∴AB= =5cm.
∵AD=AF=AC﹣FC=4﹣r,BD=BE=BC﹣EC=3﹣r,
∴4﹣r+3﹣r=5,
解得 r=1,即⊙O的半徑為1cm.
(2)解:如圖2,過點(diǎn)P作PG⊥BC,垂足為G.
∵∠PGB=∠C=90°,
∴PG∥AC.
∴△PBG∽△ABC,
∴ .
∵BP=t,
∴PG= = ,BG= = .
若⊙P與⊙O相切,則可分為兩種情況,⊙P與⊙O外切,⊙P與⊙O內(nèi)切.
①當(dāng)⊙P與⊙O外切時(shí),
如圖3,連接OP,則OP=1+t,過點(diǎn)P作PH⊥OE,垂足為H.
∵∠PHE=∠HEG=∠PGE=90°,
∴四邊形PHEG是矩形,
∴HE=PG,PH=GE,
∴OH=OE﹣HE=1﹣ ,PH=GE=BC﹣EC﹣BG=3﹣1﹣ =2﹣ .
在Rt△OPH中,
由勾股定理, ,
解得 t= .
②當(dāng)⊙P與⊙O內(nèi)切時(shí),
如圖4,連接OP,則OP=t﹣1,過點(diǎn)O作OM⊥PG,垂足為M.
∵∠MGE=∠OEG=∠OMG=90°,
∴四邊形OEGM是矩形,
∴MG=OE,OM=EG,
∴PM=PG﹣MG= ,
OM=EG=BC﹣EC﹣BG=3﹣1﹣ =2﹣ ,
在Rt△OPM中,
由勾股定理, ,
解得 t=2.
綜上所述,⊙P與⊙O相切時(shí),t= s或t=2s.
另解:外切時(shí),OP2=OD2+DP2.內(nèi)切時(shí),(t﹣1)2=12的平方加(t﹣2)2.
【解析】(1)求圓的半徑,因?yàn)橄嗲,我們通常連接切點(diǎn)和圓心,設(shè)出半徑,再利用圓的性質(zhì)和直角三角形性質(zhì)表示其中關(guān)系,得到方程,求解即得半徑.(2)考慮兩圓相切,且一圓已固定,一般就有兩種情形,外切與內(nèi)切.所以我們要分別討論,當(dāng)外切時(shí),圓心距等于兩圓半徑的和;當(dāng)內(nèi)切時(shí),圓心距等于大圓與小圓半徑的差.分別作垂線構(gòu)造直角三角形,類似(1)通過表示邊長(zhǎng)之間的關(guān)系列方程,易得t的值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一個(gè)半徑為r的圓形紙片在邊長(zhǎng)為a( )的等邊三角形內(nèi)任意運(yùn)動(dòng),則在該等邊三角形內(nèi),這個(gè)圓形紙片“不能接觸到的部分”的面積是( )
A.
B.
C.
D.πr2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,底面積為30cm2的空?qǐng)A柱形容器內(nèi)水平放置著由兩個(gè)實(shí)心圓柱組成的“幾何體”,現(xiàn)向容器內(nèi)勻速注水,注滿為止,在注水過程中,水面高度h(cm)與注水時(shí)間t(s)之間的關(guān)系如圖②所示.
請(qǐng)根據(jù)圖中提供的信息,解答下列問題:
(1)圓柱形容器的高為cm,勻速注水的水流速度為cm3/s;
(2)若“幾何體”的下方圓柱的底面積為15cm2 , 求“幾何體”上方圓柱的高和底面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從甲、乙、丙3名同學(xué)中隨機(jī)抽取環(huán)保志愿者,求下列事件的概率;
(1)抽取1名,恰好是甲;
(2)抽取2名,甲在其中.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】具備下列條件的三角形中,不是直角三角形的是( )
A. ∠A+∠B=∠C B. ∠B=∠C=∠A
C. ∠A=90°-∠B D. ∠A-∠B=90°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)P在以AB為直徑的半圓內(nèi),連接AP、BP,并延長(zhǎng)分別交半圓于點(diǎn)C、D,連接AD、BC并延長(zhǎng)交于點(diǎn)F,作直線PF,下列說法一定正確的是( ) ①AC垂直平分BF;②AC平分∠BAF;③FP⊥AB;④BD⊥AF.
A.①③
B.①④
C.②④
D.③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某數(shù)學(xué)興趣小組對(duì)線段上的動(dòng)點(diǎn)問題進(jìn)行探究,已知AB=8.
問題思考:
如圖1,點(diǎn)P為線段AB上的一個(gè)動(dòng)點(diǎn),分別以AP、BP為邊在同側(cè)作正方形APDC、BPEF.
(1)當(dāng)點(diǎn)P運(yùn)動(dòng)時(shí),這兩個(gè)正方形的面積之和是定值嗎?若是,請(qǐng)求出;若不是,請(qǐng)求出這兩個(gè)正方形面積之和的最小值.
(2)分別連接AD、DF、AF,AF交DP于點(diǎn)K,當(dāng)點(diǎn)P運(yùn)動(dòng)時(shí),在△APK、△ADK、△DFK中,是否存在兩個(gè)面積始終相等的三角形?請(qǐng)說明理由.
問題拓展:
(3)如圖2,以AB為邊作正方形ABCD,動(dòng)點(diǎn)P、Q在正方形ABCD的邊上運(yùn)動(dòng),且PQ=8.若點(diǎn)P從點(diǎn)A出發(fā),沿A→B→C→D的線路,向點(diǎn)D運(yùn)動(dòng),求點(diǎn)P從A到D的運(yùn)動(dòng)過程中,PQ的中點(diǎn)O所經(jīng)過的路徑的長(zhǎng).
(4)如圖3,在“問題思考”中,若點(diǎn)M、N是線段AB上的兩點(diǎn),且AM=BN=1,點(diǎn)G、H分別是邊CD、EF的中點(diǎn),請(qǐng)直接寫出點(diǎn)P從M到N的運(yùn)動(dòng)過程中,GH的中點(diǎn)O所經(jīng)過的路徑的長(zhǎng)及OM+OB的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠AOB的邊OB與x軸正半軸重合,點(diǎn)P是OA上的一動(dòng)點(diǎn),點(diǎn)N(6,0)是OB上的一定點(diǎn),點(diǎn)M是ON的中點(diǎn),∠AOB=30°,要使PM+PN最小,則點(diǎn)P的坐標(biāo)為_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com