如圖,△ABC為等邊三角形,BC⊥CD,且AC=CD,則∠BAD的度數(shù)是______.
∵BC⊥CD,
∴∠BCD=90°,
∵△ABC為等邊三角形,
∴∠BAC=∠ACB=90°,
∴∠ACD=90°-60°=30°,
∵AC=CD,
∴∠CAD=
180°-∠ACD
2
=
180°-30°
2
=75°,
∴∠BAD=∠BAC+∠CAD=60°+75°=135°.
故答案為:135°.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

點(diǎn)D為等邊△ABC的邊BC的中點(diǎn),則AB:BD=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,等邊△ABC中,D、E分別在AB、AC上,且AD=CE,BE、CD交于點(diǎn)P,若∠ABE:∠CBE=1:2,則∠BDP=______度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知等邊△ABC和點(diǎn)P,設(shè)點(diǎn)P到△ABC三邊AB、AC、BC(或其延長(zhǎng)線)的距離分別為h1、h2、h3,△ABC的高為h.
在圖(1)中,點(diǎn)P是邊BC的中點(diǎn),此時(shí)h3=0,可得結(jié)論:h1+h2+h3=h.
在圖(2),(3),(4),(5)中,點(diǎn)P分別在線段MC上、MC延長(zhǎng)線上、△ABC內(nèi)、△ABC外.
(1)請(qǐng)?zhí)骄浚簣D(2),(3),(4),(5)中,h1、h2、h3、h之間的關(guān)系;(直接寫出結(jié)論)圖②-⑤中的關(guān)系依次是:
h1+h2+h3=h;h1-h2+h3=h;h1+h2+h3=h;h1+h2-h3=h;
(2)證明圖(2)所得結(jié)論;
(3)證明圖(4)所得結(jié)論;
(4)(附加題2分)在圖(6)中,若四邊形RBCS是等腰梯形,∠B=∠C=60°,RS=n,BC=m,點(diǎn)P在梯形內(nèi),且點(diǎn)P到四邊BR、RS、SC、CB的距離分別是h1、h2、h3、h4,橋形的高為h,則h1、h2、h3、h4、h之間的關(guān)系為:h1+h3+h4=
mh
m-n
.圖(4)與圖(6)中的等式有何關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在直角坐標(biāo)系中,點(diǎn)B坐標(biāo)為(-4,0),點(diǎn)C與點(diǎn)B關(guān)于原點(diǎn)O對(duì)稱,點(diǎn)A為y軸上一動(dòng)點(diǎn),其坐標(biāo)為(0,k),BE,CD分別為△ABC中AC,AB邊上的高,垂足分別為E,D.
(1)當(dāng)k=-3時(shí),求AB的長(zhǎng);
(2)試說明△DOE是等腰三角形;
(3)k取何值時(shí),△DOE是等邊三角形?(直接寫出k的值即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

由6條長(zhǎng)度均為2cm的線段可構(gòu)成邊長(zhǎng)為2cm的n個(gè)等邊三角形,則n的最大值為( 。
A.4B.3C.2D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,△ABC為等邊三角形,BC⊥CD,AC=CD,則∠CED=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知OA=10,P是射線ON上一動(dòng)點(diǎn)(即P可在射線ON上運(yùn)動(dòng)),∠AON=60°.
(1)當(dāng)OP=______時(shí),△AOP為等邊三角形.
(2)當(dāng)OP=______時(shí),△AOP為直角三角形.
(3)當(dāng)OP為______時(shí),△AOP為銳角三角形.
(4)當(dāng)OP為______時(shí),△AOP為鈍角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,已知△ABC是一個(gè)等邊三角形,它的邊AB長(zhǎng)為3,D、E、F分別是AB、BC、CA的三等分點(diǎn),則△DEF的邊長(zhǎng)為______.

查看答案和解析>>

同步練習(xí)冊(cè)答案