【題目】如圖,在平面直角坐標系中,等邊的邊在軸正半軸上,點,,點、分別從、出發(fā)以相同的速度向、運動,連接、交于點,是軸上一點,則的最小值為______.
【答案】
【解析】
先證明,即可得出∠AFB=120°,即可判斷出點F的軌跡是以O’為圓心的圓上的一段弧(劣弧AB),然后確定出圓心O’的位置及其坐標,即可確定點M和點F的位置,使FM的長度最小.
如圖,∵是等邊三角形,
∴∠AOB=∠ABD=60°,OB=AB,
∵點、分別從、出發(fā)以相同的速度向、運動,
∴BD=OE,
在OBE和DAB中,
∵
∴,
∴∠OBE=∠BAD,
∴∠ABE+∠BAD= ∠ABE+∠OBE=∠ABO=60°,
∴∠AFB=180°-(∠ABE+∠BAD)=120°,
∴點F是經(jīng)過點A,B,F的圓上的點,記圓心為O’,在圓O’上取一點N,使
點N和點F在弦AB的兩側(cè),連接AN,BN,
∴∠ANB=180°-∠AFB=60°,
連接O’A,O’B,
∴∠AO’B=2∠ANB=120°,
∵O’A=O’B,
∴∠ABO’=∠BAO’,
∴∠ABO’=(180°-∠AO’B)=(180°-120°)=30°,
∵∠ABO=60°,
∴∠OBO’=90°,
∵是等邊三角形,,
∴AB=OB=2×3=6,a=,
過點O’作O’G⊥AB,
∴BG=AB=3,
在RtBO’G中,∠ABO’=30°,BG=3,
∴O’B=,
∴
∵的最小值= O’M最小值- O’F,
∴過點O’作O’M⊥y軸,垂足為M,則四邊形O’MOB是矩形,此時,O’M長度最小,最小值為6,O’M與圓O’的交點,即為點F的位置,
∵O’F=O’B=,
∴的最小值= O’M最小值- O’F=6-.
故答案是:.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AC是的直徑,BC切于點C,AB交于點D,BC的中點為E,連接DE.
(1)求證:
(2)連接E0交于點F填空:
①當__________時,以D,E,C,O為頂點的四邊形是正方形;
②當______________時,以A,D,E,O為頂點的四邊形是平行四邊形
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在方格紙中,點A,B,P都在格點上.請按要求畫出以AB為邊的格點四邊形,使P在四邊形內(nèi)部(不包括邊界上),且P到四邊形的兩個頂點的距離相等.
(1)在圖甲中畫出一個ABCD.
(2)在圖乙中畫出一個四邊形ABCD,使∠D=90°,且∠A≠90°.(注:圖甲、乙在答題紙上)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】寒冬來臨,豆絲飄香,豆絲是鄂州民間傳統(tǒng)美食;某企業(yè)接到一批豆絲生產(chǎn)任務,約定這批豆絲的出廠價為每千克4元,按要求在20天內(nèi)完成.為了按時完成任務,該企業(yè)招收了新工人,新工人李明第1天生產(chǎn)100千克豆絲,由于不斷熟練,以后每天都比前一天多生產(chǎn)20千克豆絲;設李明第x天(,且x為整數(shù))生產(chǎn)y千克豆絲,解答下列問題:
(1)求y與x的關系式,并求出李明第幾天生產(chǎn)豆絲280千克?
(2)設第x天生產(chǎn)的每千克豆絲的成本是p元,p與x之間滿足如圖所示的函數(shù)關系;若李明第x天創(chuàng)造的利潤為w元,求w與x之間的函數(shù)表達式,并求出第幾天的利潤最大?最大利潤是多少元?(利潤=出廠價-成本)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,過點A作AE⊥BC,垂足為E,連接DE,F為線段DE上一點,且∠AFE=∠B.
(1)求證:∠DFA=∠ECD;
(2)△ADF與△DEC相似嗎?為什么?
(3)若AB=4,AD=3,AE=3,求AF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公司生產(chǎn)一種節(jié)能型燈具并加以銷售,現(xiàn)準備在甲市和乙市按不同的方案進行銷售,若只在甲市銷售,銷售價為(元/件),月銷售量為(件),是的一次函數(shù).如表所示,成本為50元/件,無論銷售多少,每月還需支出廣告費用72500元。設月利潤為(元),(利潤=銷售額-成本-廣告費).若只在乙市銷售,銷售價為200元/件,受各種因素影響,成本為元/件(為常數(shù)且),當月銷售量為件時,每月還需交納的附加費,設月利潤為(元).(利潤=銷售額-成本-附加費)
月銷售量(件) | 1500 | 2000 |
銷售價格(元/件) | 185 | 180 |
(1)當時,______元/件,______元(直接寫出結(jié)果).
(2)分別求出、與的函數(shù)關系式(不必寫出的取值范圍).
(3)當為何值時,最大?若在乙市銷售月利潤最大值與甲市最大值相同,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明利用燈光下自己的影子長度來測量路燈的高度.如圖,CD和EF是兩等高的路燈,相距27m,身高1.5m的小明(AB)站在兩路燈之間(D、B、F共線),被兩路燈同時照射留在地面的影長BQ=4m,BP=5m.
(1)小明距離路燈多遠?
(2)求路燈高度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在邊長為1的小正方形網(wǎng)格中:
(1)向上平移6個單位長度,再向右平移5個單位長度后得到,則的坐標為______;
(2)以點為位似中心,將放大為原來的2倍,得到,請在網(wǎng)格中畫出.
(3)的周長為_________________,面積為_________________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】曉東在解一元二次方程時,發(fā)現(xiàn)有這樣一種解法:
如:解方程.
解:原方程可變形,得
.
,
,
直接開平方并整理,得,.
我們稱曉東這種解法為“平均數(shù)法”.
(1)下面是曉東用“平均數(shù)法”解方程時寫的解題過程.
.
,
.
直接開平方并整理,得,.
上述過程中的“□”,“○”,“☆”,“¤”表示的數(shù)分別為________,________,________,________.
(2)請用“平均數(shù)法”解方程:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com