【題目】如圖,在矩形ABCD中,AB=5,AD=9,點P為AD邊上點,沿BP折疊△ABP,點A的對應(yīng)點為E,若點E到矩形兩條較長邊的距離之比為1:4,則AP的長為_____.
【答案】
【解析】
分點E在矩形內(nèi)部,EM:EN=1:4,或EM:EN=4:1,點E在矩形外部,EN:EM=1:4,三種情況討論,根據(jù)折疊的性質(zhì)和勾股定理可求AP的長度.
解:過點E作ME⊥AD,延長ME交BC與N,
∵四邊形ABCD是矩形
∴AD∥BC,且ME⊥DA
∴EN⊥BC 且∠A=90°=∠ABC=90°
∴四邊形ABNM是矩形
∴AB=MN=5,AM=BN
若ME:EN=1:4,如圖1
∵ME:EN=1:4,MN=5
∴ME=1,EN=4
∵折疊
∴BE=AB=5,AP=PE
在Rt△BEN中,BN==3
∴AM=3
在Rt△PME中,PE2=ME2+PM2
AP2=(3﹣AP)2+1
解得AP=
若ME:EN=4:1,則EN=1,ME=4,如 圖2
在Rt△BEN中,BN==2
∴AM=2
在Rt△PME中,PE2=ME2+PM2
AP2=(2﹣AP )2+16
解得AP=
若點E在矩形外,如圖
∵EN:EM=1:4
∴EN=,EM=
在Rt△BEN中,BN==
∴A=
在Rt△PME中,PE2=ME2+PM2
AP2=(AP﹣)2+()2
解得:AP=5
故答案為,,5.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,直線y=﹣x+4與x軸、y軸分別交于點A、點B,點D在y軸的負半軸上,若將△DAB沿直線AD折疊,點B恰好落在x軸正半軸上的點C處.
(1)求AB的長和點C的坐標;
(2)求直線CD的解析式;
(3)y軸上是否存在一點P,使得S△PAB=,若存在,請求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,△ABC中,A(﹣2,1)、B(﹣4,﹣2)、C(﹣1,﹣3),△A′B′C′是△ABC平移之后得到的圖,并且C的對應(yīng)點C′的坐標為(4,1)。
(1)A′、B′.兩點的坐標分別為A′ 、B′ ;
(2)請作出△ABC平移之后的圖形△A′B′C′;
(3)求△A′B′C′的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標系中,直線與x軸正半軸,y軸正半軸分別交于點A,B,點,點E在第一象限,為等邊三角形,連接AE,BE
求點E的坐標;
當BE所在的直線將的面積分為3:1時,求的面積;
取線段AB的中點P,連接PE,OP,當是以OE為腰的等腰三角形時,則______直接寫出b的值
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了解學(xué)生“自主學(xué)習(xí)、合作交流” 的情況,對某班部分同學(xué)進行了一段時間的跟蹤調(diào)查,將調(diào)查結(jié)果(A:特別好;B:好;C:一般;D:較差)繪制成以下兩幅不完整的統(tǒng)計圖.請根據(jù)圖中提供的信息,解答下列問題:
(1)補全條形統(tǒng)計圖;
(2)扇形統(tǒng)計圖中,求 類所占圓心角的度數(shù);
(3)學(xué)校想從被調(diào)查的 類(1名男生2名女生)和D類(男女生各占一半)中分別選取一位同學(xué)進行“一幫一”互助學(xué)習(xí),請用畫樹形圖或列表的方法求所選的兩位同學(xué)恰好是一男一女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,圖象過點A(-3,0),對稱軸為直線x=-1,給出四個結(jié)論:①b2>4ac;②2a+b=0;③a+b+c>0;④若點B( ,y1),C( ,y2)為函數(shù)圖象上的兩點,則y1<y2 . 其中正確結(jié)論是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,CA⊥BC,垂足為C,AC=2cm,BC=6cm,射線BM⊥BQ,垂足為B,動點P從C點出發(fā)以1cm/s的速度沿射線CQ運動,點N為射線BM上一動點,滿足PN=AB,隨著P點運動而運動,當點P運動_____秒時,△BCA與點P、N、B為頂點的三角形全等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:
在數(shù)學(xué)課上,老師請同學(xué)們思考如下問題:
請利用直尺和圓規(guī)四等分弧AB.
小亮的作法如下:
如圖,
(1)連接AB;
(2)作AB的垂直平分線CD交弧AB于點M.交AB于點T;
(3)分別作線段AT,線段BT的垂直平分線EF,GH,交弧AB于N,P兩點;
那么N,M,P三點把弧AB四等分.
老師問:“小亮的作法正確嗎?”
請回備:小亮的作法_____(“正確”或“不正確”)理由是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線交x軸于A,交y軸于B,過B作,且,點C在第四象限,點.
求點A,B,C的坐標;
點M是直線AB上一動點,當最小時,求點M的坐標;
點P、Q分別在直線AB和BC上,是以RQ為斜邊的等腰直角三角形直接寫出點P的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com