【題目】如圖,在△ABC中,AB=AC=10,以AB為直徑的⊙O分別交AC、BC于點D、E,點F在AC的延長線上,且∠CBF=∠A,tan∠CBF=,則CF的長為( )
A. B. C. D.
【答案】A
【解析】
試題分析:連接AE,根據(jù)AB是直徑,得出AE⊥BC,CE=EB,依據(jù)已知條件得出∠CBF=∠EAB,F(xiàn)B是圓的且線,進而得出CB的長,然后根據(jù)割線定理求得CD的長,最后根據(jù)切割線定理求得FC.
解:連接AE,
∵AB為直徑,
∴AE⊥BC,
∵AB=AC,
∴∠EAB=∠CAB,EB=CE=CB,
∵∠CBF=∠CAB,tan∠CBF=,
∴∠CBF=∠EAB,tan∠EAB==,
∴∠CBF+∠ABC=∠EAB+∠ABC=90°,
∴FB是⊙O的切線,
∴FB2=FDFA,
在RT△AEB中,AB=10,
∴EB=,
∴CB=2,CE=,
∵CECB=CDAC,AC=10,
∴CD=2,
∴AD=AC﹣CD=8,
設(shè)CF=x,則FD=x+2,F(xiàn)A=10+x,F(xiàn)B2=AF2﹣AB2=(10+x)2﹣102,
∴(10+x)2﹣102=(x+2)(10+x),
整理得:x=,
∴CF=,
故應(yīng)選A.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示.
(1)若線段AB=4cm,點C在線段AB上(如圖①),點M、N分別是線段AC、BC的中點,求線段MN長.
(2)若線段AB=acm,點C在線段AB的延長線上(如圖②),點M、N分別是線段AC、BC的中點,你能猜想出MN的長度嗎?請寫出你的結(jié)論,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知等腰三角形的一個內(nèi)角為70°,則另兩個內(nèi)角的度數(shù)是( 。
A. 55°,55° B. 70°,40°
C. 55°,55°或70°,40° D. 以上都不對
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A.無限小數(shù)是無理數(shù);
B.零是整數(shù),但不是正數(shù),也不是負數(shù);
C.分數(shù)包括正分數(shù)、負分數(shù)和零;
D.有理數(shù)不是正數(shù)就是負數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小張、小王和另兩名同學(xué)一起去看電影《尋龍訣》,小張買到4張座位相連的電影票,座位號順次為8排3、4、5、6座.現(xiàn)在小張和小王從中隨機各抽取一張電影票,求小張和小王抽取的電影票正好是相鄰座位的概率(請通過畫樹狀圖或列表法寫出分析過程).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,直線l:y=3x+3與x軸交于點A,與y軸交于點B.把△AOB沿y軸翻折,點A落到點C,拋物線過點B、C和D(3,0).
(1)求直線BD和拋物線的解析式.
(2)若BD與拋物線的對稱軸交于點M,點N在坐標軸上,以點N、B、D為頂點的三角形與△MCD相似,求所有滿足條件的點N的坐標.
(3)在拋物線上是否存在點P,使S△PBD=6?若存在,求出點P的坐標;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】周六媽媽從新世紀購物回來,5斤蘑菇和1斤牛肉共40元,媽媽嘮叨:“上周也是買同樣多才花了35元,價格上漲太厲害了.”在看書的爸爸:“剛才聽老張說蘑菇單價上漲40%,牛肉單價上漲10%”,在學(xué)習(xí)的小強想應(yīng)該怎樣通過列方程(組)求解今天蘑菇、牛肉的單價呢?請聰明的你幫小強解決這個問題.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2003~2005年某市的財政收入情況如圖所示.根據(jù)圖中的信息,解答下列問題:
(1)該市2003~2005年財政收入的年平均增長率約為多少?(精確到1%)
(2)該市2006年財政收入能否達到700億元?請說明理由.
(備用數(shù)據(jù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=5cm,BC=12cm,將△ABC繞點B順時針旋轉(zhuǎn)60°,得到△BDE,連接DC交AB于點F,則△ACF與△BDF的周長之和為 cm.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com