精英家教網 > 初中數學 > 題目詳情

【題目】把幾個不同的數用大括號圍起來,中間用逗號斷開,如:{34},{36,8,18},我們稱之為集合,其中大括號內的數稱其為集合的元素,如果一個集合滿足:只要其中有一個元素a,使得-2a4也是這個集合的元素,這樣的集合我們稱為條件集合,例如:集合{32},因為-2×34=-2,-2恰好是這個集合的元素,所以{3,-2}是條件集合:例如:集合{2,98},因為-2×(2)48,8恰好是這個集合的元素,所以{29,8}是條件集合.

1)集合{4,12}______條件集合;集合{,- }______條件集合 (不是

2)若集合{8,10,n}是條件集合,求n的所有可能值.

【答案】1)是;是;(2n的可能值有-12,-16-2,-3

【解析】

1)依據一個集合滿足:只要其中有一個元素a,使得-2a+4也是這個集合的元素,這樣的集合我們稱為條件集合,即可得到結論;
2)分情況討論:若n=-2×8+4,則n=-12;若n=-2×10+4,則n=-16;若-2n+4=8,則n=-2;若-2n+4=10,則n=-3;若-2n+4=n,則n=.

解:(1)∵-4×(-2+4=12,
∴集合{-412}是條件集合;
×(-2+4=,
∴集合{,-,}是條件集合.
故答案為:是;是;
2)∵集合{8,10n}是條件集合,
∴若n=-2×8+4,則n=-12;
n=-2×10+4,則n=-16;
-2n+4=8,則n=-2;
-2n+4=10,則n=-3;
-2n+4=n,則n=;
∴可得n的可能值有-12-16,-2-3,

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,反比例函數y=的圖象與一次函數y=x的圖象交于點A、B,點B的橫坐標是4.點P是第一象限內反比例函數圖象上的動點,且在直線AB的上方.

(1)若點P的坐標是(1,4),直接寫出k的值和PAB的面積;

(2)設直線PA、PBx軸分別交于點M、N,求證:PMN是等腰三角形;

(3)設點Q是反比例函數圖象上位于P、B之間的動點(與點P、B不重合),連接AQ、BQ,比較∠PAQ與∠PBQ的大小,并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】甲乙兩車沿直路同向勻速行駛,甲、乙兩車在行駛過程中離乙車出發(fā)地的路程與出發(fā)的時間的函數關系加圖1所示,兩車之間的距離與出發(fā)的時間的函數關系如圖2所示.

1)圖2__________,__________

2)請用待定系數法求、關于的函數解析式;(不用寫自變量取值范圍)

3)出發(fā)多長時間,兩車相距

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,四邊形ABCD為平行四邊形,∠BAD的角平分線AE交CD于點F,交BC的延長線于點E.

(1)求證:BE=CD;

(2)連接BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四邊形ABCD的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,直線的表達式為,A,B的坐標分別為

(1,0),(0,2),直線AB與直線相交于點P

(1)求直線AB的表達式;

(2)求點P的坐標;

(3)若直線上存在一點C,使得APC的面積是APO的面積的2倍,直接寫出點C的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】我們約定:對角線相等的四邊形稱之為:等線四邊形。

1)①在平行四邊形、菱形、矩形、正方形中一定是等線四邊形的是___________________;

②如圖1,若四邊形等線四邊形, 分別是邊的中點,依次連接,得到四邊形,請判斷四邊形的形狀:______________________;

2)如圖2,在平面直角坐標系中,已知,以為直徑作圓,該圓與軸的正半軸交于點,若為坐標系中一動點,且四邊形等線四邊形。當的長度最短時,求經過三點的拋物線的解析式;

3)如圖3,在平面直角坐標系中,四邊形等線四邊形 軸的負半軸上,軸的負半軸上,且。點分別是一次函數軸,軸的交點,動點從點開始沿軸的正方向運動,運動的速度為2個單位長度/秒,設運動的時間為秒,以點為圓心,半徑,單位長度作圓,問:①當與直線初次相切時,求此時運動的時間;②當運動的時間滿足時,與直線相交于,求弦長的最大值。

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,拋物線y=x2+bx+c與x軸交于A,B兩點,且點A在點B的左側,直線y=﹣x﹣1與拋物線交于A,C兩點,其中點C的橫坐標為2.

(1)求二次函數的解析式;

(2)P是線段AC上的一個動點,過點P作y軸的平行線交拋物線于點E,求線段PE長度的最大值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】對于任意四個有理數a,b,cd,可以組成兩個有理數對a,bcd).我們規(guī)定

a,bcd=bcad

例如:(1,23,4=2×31×4=2

根據上述規(guī)定解決下列問題

1有理數對2,-33,-2=_______;

2若有理數對(-32x11,x+1=7,x=_______;

3當滿足等式(-3,2x1kxk=52kx是整數時,求整數k的值

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=30°,將△ABC繞點C逆時針旋轉得到△DEC,點A的對應點D恰好落在線段CB的延長線上,連接AD,若∠ADE=90°,則∠BAD=_________

查看答案和解析>>

同步練習冊答案