【題目】甲、乙兩人相約周末登花果山,甲、乙兩人距地面的高度y(米)與登山時間x(分)之間的函數圖象如圖所示,根據圖象所提供的信息解答下列問題:
(1)甲登山上升的速度是每分鐘 米,乙在A地時距地面的高度b為 米;
(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,請求出乙登山全程中,距地面的高度y(米)與登山時間x(分)之間的函數關系式;
(3)登山多長時間時,甲、乙兩人距地面的高度差為70米?
【答案】(1)10;30;(2)y=;(3)3分鐘、10分鐘或13分鐘.
【解析】
(1)根據速度=高度÷時間即可算出甲登山上升的速度;根據高度=速度×時間即可算出乙在A地時距地面的高度b的值;
(2)分0≤x≤2和x≥2兩種情況,根據高度=初始高度+速度×時間即可得出y關于x的函數關系;
(3)找出甲登山全程中y關于x的函數關系式,令二者做差等于50即可得出關于x的一元一次方程,解之即可得出結論.
解:(1)(300-100)÷20=10(米/分鐘),
b=15÷1×2=30.
故答案為:10;30.
(2)當0≤x≤2時,y=15x;
當x≥2時,y=30+10×3(x-2)=30x-30.
當y=30x-30=300時,x=11.
∴乙登山全程中,距地面的高度y(米)與登山時間x(分)之間的函數關系式為y= .
(3)甲登山全程中,距地面的高度y(米)與登山時間x(分)之間的函數關系式為y=10x+100(0≤x≤20).
當10x+100-15x=70時,解得:x=6(舍去);
當10x+100-(30x-30)=70時,解得:x=3;
當30x-30-(10x+100)=70時,解得:x=10;
當300-(10x+100)=70時,解得:x=13.
答:登山3分鐘、10分鐘或13分鐘時,甲、乙兩人距地面的高度差為70米.
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,△ABC的三個頂點坐標分別為A(2,﹣4),B(3,﹣2),C(6,﹣3).
(1)畫出△ABC關于x軸對稱的△A1B1C1;
(2)以M點為位似中心,在網格中畫出△A1B1C1的位似圖形△A2B2C2 , 使△A2B2C2與△A1B1C1的相似比為2:1;
(3)若每一個方格的面積為1,則△A2B2C2的面積為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下表反映的是某地區(qū)電的使用量x(千瓦時)與應交電費y(元)之間的關系,下列說法不正確的是( 。
用電量x(千瓦時) | 1 | 2 | 3 | 4 | … |
應交電費y(元) | 0.55 | 1.1 | 1.65 | 2.2 | … |
A. x與y都是變量,且x是自變量,y是x的函數
B. 用電量每增加1千瓦時,電費增加0.55元
C. 當交電費20.5元時,用電量為37千瓦時
D. 若用電量為8千瓦時,則應交電費4.4元
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】水果店王阿姨到水果批發(fā)市場打算購進一種水果銷售,經過還價,實際價格每千克比原來少2元,發(fā)現原來買這種水果80千克的錢,現在可買88千克.
(1)現在實際購進這種水果每千克多少元?
(2)王阿姨準備購進這種水果銷售,若這種水果的銷售量y(千克)與銷售單價x(元/千克)滿足如圖所示的一次函數關系. ①求y與x之間的函數關系式;
②請你幫王阿姨拿個主意,將這種水果的銷售單價定為多少時,能獲得最大利潤?最大利潤是多少?(利潤=銷售收入﹣進貨金額)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(閱讀材料)
∵<<,即2<<3,
∴1<<2.
∴﹣1的整數部分為1.
∴﹣1的小數部分為﹣2
(解決問題)9的小數部分是 ;
我們還可以用以下方法求一個無理數的近似值.
閱讀理解:求的近似值.
解:設=10+x,其中0<x<1,則107=(10+x)2,即107=100+20x+x2.
因為0<x<1,所以0<x2<1,所以107≈100+20x,解之得x≈0.35,即的近似值為10.35.
理解應用:利用上面的方法求的近似值(結果精確到0.01).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在等腰△ABC中,∠ACB=90°,且AC=1.過點C作直線l∥AB,P為直線l上一點,且AP=AB.則點P到BC所在直線的距離是( )
A.1
B.1或
C.1或
D. 或
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】媽媽買回6個粽子,其中1個花生餡,2個肉餡,3個棗餡.從外表看,6個粽子完全一樣,女兒有事先吃.
(1)若女兒只吃一個粽子,則她吃到肉餡的概率是;
(2)若女兒只吃兩個粽子,求她吃到的兩個都是肉餡的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,菱形ABCD中,∠A=60°,點P從A出發(fā),以2cm/s的速度沿邊AB、BC、CD勻速運動到D終止,點Q從A與P同時出發(fā),沿邊AD勻速運動到D終止,設點P運動的時間為t(s).△APQ的面積S(cm2)與t(s)之間函數關系的圖象由圖2中的曲線段OE與線段EF、FG給出.
(1)求點Q運動的速度;
(2)求圖2中線段FG的函數關系式;
(3)問:是否存在這樣的t,使PQ將菱形ABCD的面積恰好分成1:5的兩部分?若存在,求出這樣的t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某中學為使高一新生入校后及時穿上合身的校服,現提前對某校九年級三班學生即將所穿校服型號情況進行了摸底調查,并根據調查結果繪制了如圖兩個不完整的統(tǒng)計圖(校服型號以身高作為標準,共分為6個型號):
根據以上信息,解答下列問題:
(1)該班共有 名學生;
(2)補全條形統(tǒng)計圖;
(3)該班學生所穿校服型號的眾數為 ,中位數為 ;
(4)如果該校預計招收新生1500名,根據樣本數據,估計新生穿170型校服的學生大約有多少名?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com