【題目】如圖所示,⊙O的內(nèi)接△ABC中,∠BAC=45°,∠ABC=15°,AD∥OC并交BC的延長線于D點,OC交AB于E點.
(1)求∠D的度數(shù);
(2)若CE=3,AD=4,求線段AC的長.
【答案】(1)45°;(2)AC=2.
【解析】
試題分析:(1)首先連接OC,由∠BAC=45°,易得△OBC是等腰直角三角形,又由AD∥OC,可求得∠D的度數(shù);
(2)首先證得△ACE∽△DAC,然后由相似三角形的對應(yīng)邊成比例,求得答案.
解:(1)連接OB,
∵∠BOC=2∠BAC=90°,OB=OC,
∴∠OCB=∠OBC=45°,
∵AD∥OC,
∴∠D=∠OCB=45°;
(2)∵∠ABC=15°,∠OCB=45°,
∴∠AEC=60°,∠ACD=∠ABC+∠BAC=60°,
∴∠AEC=∠ACD=60°,
∵∠D=45°,∠ACD=60°,
∴∠CAD=75°,
又∵∠OCA=75°,
∴∠CAD=∠OCA=75°,
∴△ACE∽△DAC,
∴=,
即AC2=ADCE=4×3=12,
∴AC=2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某制藥廠兩年前生成1噸某種藥品的成本是100萬元,隨著生產(chǎn)技術(shù)的進步,現(xiàn)在生產(chǎn)1噸這種藥品的成本為81萬元,設(shè)這種藥品成本的年平均下降率為x,根據(jù)題意所列方程為( )
A.100(1+x)2=81
B.100(1﹣x)2=81
C.81(1+x)2=100
D.81(1﹣x)2=100
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解中考體育科目訓(xùn)練情況,某縣從全縣九年級學(xué)生中隨機抽取了部分學(xué)生進行了一次中考體育科目測試(把測試結(jié)果分為四個等級:A級:優(yōu)秀;B級:良好;C級:及格;D級:不及格),并將測試結(jié)果繪成了如下兩幅不完整的統(tǒng)計圖.請根據(jù)統(tǒng)計圖中的信息解答下列問題:
(1)本次抽樣測試的學(xué)生人數(shù)是 ;
(2)圖1中∠α的度數(shù)是 ,并把圖2條形統(tǒng)計圖補充完整;
(3)該縣九年級有學(xué)生3500名,如果全部參加這次中考體育科目測試,請估計不及格的人數(shù)為 .
(4)測試?yán)蠋熛霃?/span>4位同學(xué)(分別記為E、F、G、H,其中E為小明)中隨機選擇兩位同學(xué)了解平時訓(xùn)練情況,請用列表或畫樹形圖的方法求出選中小明的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將0.00025用科學(xué)計數(shù)法表示為( )
A. 2.5×104 B. 0.25×10-4 C. 2.5×10-4 D. 25×10-5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:∠MON=40°,OE平分∠MON,點A、B、C分別是射線OM、OE、ON上的動點(A、B、C不與點O 重合),連接AC交射線OE于點D.設(shè)∠OAC=x°.
(1)如圖1,若AB∥ON,則①∠ABO的度數(shù)是 ;
②當(dāng)∠BAD=∠ABD時,x= ;當(dāng)∠BAD=∠BDA時,x= .
(2)如圖2,若AB⊥OM,則是否存在這樣的x的值,使得△ADB中有兩個相等的角?若存在,求出x的值;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,正方形ABCO的頂點A、C分別在y軸、x軸上,以AB為弦的⊙M與x軸相切,若點A的坐標(biāo)為(0,﹣4),則圓心M的坐標(biāo)為( )
A.(﹣2,2.5) B.(2,﹣1.5) C.(2.5,﹣2) D.(2,﹣2.5)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com