如圖在△ABC中,ABAC,點(diǎn)DAC上,且BDBCAD,求△ABC各個(gè)內(nèi)角的度數(shù).

答案:
解析:

如圖:

因?yàn)?/FONT>ABAC,BCBDAD

所以∠ABC=∠ACB=∠CDB,

A=∠ABD

又∠CDB=∠A+∠ABD,

設(shè)∠Ax

則有x4x180°,

解之得x36°.

所以∠ABC=∠ACB72°.


提示:

觀察圖形中的關(guān)于角的數(shù)量關(guān)系:三角形的內(nèi)角和,外角性質(zhì),等腰三角形的底角等.可以發(fā)現(xiàn):∠ABC=∠ACB=∠CDB=∠A+∠ABD;∠A=∠ABD;∠A2C180°,若設(shè)∠Ax,則有x4x180°,得到x36°,進(jìn)一步得到兩個(gè)底角度數(shù).


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

5、如圖在△ABC中,∠ACB=90°,CD是邊AB上的高.那么圖中與∠A相等的角是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖在△ABC中,∠ABC=50°,∠ACB=75°,點(diǎn)O是內(nèi)心,則∠BOC的度數(shù)為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖在△ABC中,∠A=45°,tanB=3,BC=
10
,求AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知,如圖在△ABC中,AD是BC邊上的高線,CE是AB邊上的中線,DG平分∠CDE,DC=AE,
求證:CG=EG.
證明:∵AD⊥BC
∴∠ADB=90°
∵CE是AB邊上的中線
∴E是AB的中點(diǎn)
∴DE=
1
2
AB
1
2
AB
(直角三角形斜邊上的中線等于斜邊的一半)
又∵AE=
1
2
AB
∴AE=DE
∵AE=CD
∴DE=CD
即△DCE是
等腰
等腰
三角形
∵DG平分∠CDE
∴CG=EG(
等腰三角形三線合一
等腰三角形三線合一

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖在△ABC中,AD垂直平分BC,AD=8,BC=10,E、F是AD上的兩點(diǎn),則圖中陰影部分的面積是
20
20

查看答案和解析>>

同步練習(xí)冊答案