【題目】如圖,AC邊相切于點(diǎn)C,與ABBC邊分別交于點(diǎn)D、E,CE的直徑.

1)求證:AB的切線;

2)若AC的長.

【答案】1)證明見解析 2

【解析】

1)連接OD、CD,根據(jù)圓周角定理得出,根據(jù)平行線的性質(zhì)得出,根據(jù)垂徑定理得出OA垂直平分CD,根據(jù)垂直平分線的性質(zhì)得出,然后根據(jù)等腰三角形的三線合一的性質(zhì)得出,進(jìn)而證得,得到,即可證得結(jié)論;

2)易證△BED∽△BDC,求得BE,得到BC,然后根據(jù)切線長定理和勾股定理列出關(guān)于y的方程,解方程即可.

證明:連接OD、CD,

CE的直徑,

,

,

OA垂直平分CD,

,

,

,,

AC是切線,

,

,

,

OD是半徑,

AB的切線;

2)解:∵BD切線,易證△BED∽△BDC,

,

設(shè),∵

,

解得(舍去),

,

,

AD、AC的切線,

,

設(shè),

中,,

,

解得,

,

AC的長為6

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為2,點(diǎn)EBC的中點(diǎn),AEBD交于點(diǎn)P,FCD上的一點(diǎn),連接AF分別交BD,DE于點(diǎn)M,N,且AFDE,連接PN,則下列結(jié)論中:

;②;③tanEAF=;④正確的是()

A. ①②③B. ①②④C. ①③④D. ②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC是邊長為4的等邊三角形,點(diǎn)DAB上異于A,B的一動(dòng)點(diǎn),將△ACD繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)60°△BCE,則旋轉(zhuǎn)過程中△BDE周長的最小值_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲,乙兩人同時(shí)各接受了300個(gè)零件的加工任務(wù),甲比乙每小時(shí)加工的數(shù)量多,兩人同時(shí)開工,其中一人因機(jī)器故障停止加工若干小時(shí)后又繼續(xù)按原速加工,直到他們完成任務(wù)。如圖表示甲比乙多加工的零件數(shù)量y(個(gè))與加工時(shí)間x(小時(shí))之間的函數(shù)關(guān)系,觀察圖象解決下列問題:

1)其中一人因故障,停止加工_________小時(shí),C點(diǎn)表示的實(shí)際意義是________________.甲每小時(shí)加工的零件數(shù)量為_____________個(gè);

2)求線段BC對(duì)應(yīng)的函數(shù)關(guān)系式和D點(diǎn)坐標(biāo);

3)乙在加工的過程中,多少小時(shí)時(shí)比甲少加工75個(gè)零件?

4)為了使乙能與甲同時(shí)完成任務(wù),現(xiàn)讓丙幫乙加工,直到完成.丙每小時(shí)能加工80個(gè)零件,并把丙加工的零件數(shù)記在乙的名下,問丙應(yīng)在第多少小時(shí)時(shí)開始幫助乙?并在圖中用虛線畫出丙幫助后yx之間的函數(shù)關(guān)系的圖象.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線軸于兩點(diǎn),與軸交于點(diǎn),連接

求拋物線的解析式;

軸下方拋物線上的一點(diǎn),且,請通過計(jì)算或推理判斷的位置關(guān)系:

軸左側(cè)的拋物線上是否存在與點(diǎn)不重合的點(diǎn),使等于中的某個(gè)銳角? 若存在,請求出的值:若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖, BD ABC 的角平分線, AE BD ,垂足為 F ,若∠ABC35°,∠ C50°,則∠CDE 的度數(shù)為(

A.35°B.40°C.45°D.50°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】Rt△ABC中,BC=9, CA=12∠ABC的平分線BDAC與點(diǎn)D, DE⊥DBAB于點(diǎn)E

1)設(shè)⊙O△BDE的外接圓,求證:AC⊙O的切線;

2)設(shè)⊙OBC于點(diǎn)F,連結(jié)EF,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】興趣小組根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)yx+的圖象和性質(zhì)進(jìn)行了探究,探究過程如下,請補(bǔ)充完整

1)函數(shù)yx+的自變量取值范圍是   

2)下表是xy的幾組對(duì)應(yīng)值

則表中m的值為   

3)根據(jù)表中數(shù)據(jù),在如圖所示平面直角坐標(biāo)xOy中描點(diǎn),并畫出函數(shù)的一部分,請畫出該函數(shù)的圖象的另一部分,

4)觀察函數(shù)圖象:寫出該函數(shù)的一條性質(zhì):   

5)進(jìn)一步探究發(fā)現(xiàn):函數(shù)yx+圖象與直線y=﹣2只有一交點(diǎn),所以方程x+=﹣2只有1個(gè)實(shí)數(shù)根,若方程x+kx0)有兩個(gè)不相等的實(shí)數(shù)根,則k的取值范圍是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在正方形中,分別是上的點(diǎn),且,則有結(jié)論成立;

如圖2,在四邊形中,分別是上的點(diǎn),且的一半, 那么結(jié)論是否仍然成立?若成立,請證明;不成立,請說明理由.

若將中的條件改為:如圖3,在四邊形中,,延長到點(diǎn),延長到點(diǎn),使得仍然是的一半,則結(jié)論是否仍然成立?若成立,請證明;不成立,請寫出它們的數(shù)量關(guān)系并證明

查看答案和解析>>

同步練習(xí)冊答案