【題目】如圖所示,在平面直角坐標(biāo)系中,已知一次函數(shù)y=x+1的圖象與x軸,y軸分別交于A,B兩點(diǎn),以AB為邊在第二象限內(nèi)作正方形ABCD.

(1)求邊AB的長(zhǎng);

(2)求點(diǎn)C,D的坐標(biāo);

(3)在x軸上是否存在點(diǎn)M,使MDB的周長(zhǎng)最?若存在,請(qǐng)求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

【答案】(1);(2)C(﹣1,3),D(﹣3,2);(3)M(﹣1,0).

【解析】

試題分析:(1)在直角三角形AOB中,由OA與OB的長(zhǎng),利用勾股定理求出AB的長(zhǎng)即可;

(2)過(guò)C作y軸垂線,過(guò)D作x軸垂線,分別交于點(diǎn)E,F(xiàn),可得三角形CBE與三角形ADF與三角形AOB全等,利用全等三角形對(duì)應(yīng)邊相等,確定出C與D坐標(biāo)即可;

(3)作出B關(guān)于x軸的對(duì)稱點(diǎn)B′,連接B′D,與x軸交于點(diǎn)M,連接BD,BM,此時(shí)MDB周長(zhǎng)最小,求出此時(shí)M的坐標(biāo)即可.

解:(1)對(duì)于直線y=x+1,令x=0,得到y(tǒng)=1;令y=0,得到x=﹣2,

A(﹣2,0),B(0,1),

在RtAOB中,OA=2,OB=1,

根據(jù)勾股定理得:AB==

(2)作CEy軸,DFx軸,可得CEB=AFD=AOB=90°,

正方形ABCD,

BC=AB=AD,DAB=ABC=90°,

∴∠DAF+BAO=90°ABO+CBE=90°,

∵∠DAF+ADF=90°BAO+ABO=90°,

∴∠BAO=ADF=CBE

∴△BCE≌△DAFABO,

BE=DF=OA=2,CE=AF=OB=1,

OE=OB+BE=2+1=3,OF=OA+AF=2+1=3,

C(﹣1,3),D(﹣3,2);

(3)找出B關(guān)于x軸的對(duì)稱點(diǎn)B′,連接B′D,與x軸交于點(diǎn)M,此時(shí)BMD周長(zhǎng)最小,

B(0,1),

B′(0,﹣1),

設(shè)直線B′D的解析式為y=kx+b,

把B′與D坐標(biāo)代入得:,

解得:,即直線B′D的解析式為y=﹣x﹣1,

令y=0,得到x=﹣1,即M(﹣1,0).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖將豎直放置的長(zhǎng)方形磚塊ABCD推倒至長(zhǎng)方形A'B'C'D'的位置,長(zhǎng)方形ABCD的長(zhǎng)和寬分別為ab,AC的長(zhǎng)為c.

1你能用只含a,b的代數(shù)式表示SABC,SC'A'D'S直角梯形A'D'BA?能用只含c的代數(shù)式表示SACA'?

2利用(1)的結(jié)論,你能驗(yàn)證勾股定理嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】新農(nóng)村社區(qū)改造中,有一部分樓盤要對(duì)外銷售,某樓盤共23層,銷售價(jià)格如下:第八層樓房售價(jià)為4000/2,從第八層起每上升一層,每平方米的售價(jià)提高50元;反之,樓層每下降一層,每平方米的售價(jià)降低30元,已知該樓盤每套樓房面積均為1202

若購(gòu)買者一次性付清所有房款,開(kāi)發(fā)商有兩種優(yōu)惠方案:

方案一:降價(jià)8%,另外每套樓房贈(zèng)送a元裝修基金;

方案二:降價(jià)10%,沒(méi)有其他贈(zèng)送.

1)請(qǐng)寫出售價(jià)y(元/2)與樓層x1≤x≤23,x取整數(shù))之間的函數(shù)關(guān)系式;

2)老王要購(gòu)買第十六層的一套樓房,若他一次性付清購(gòu)房款,請(qǐng)幫他計(jì)算哪種優(yōu)惠方案更加合算.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知ABC是邊長(zhǎng)為3cm的等邊三角形,動(dòng)點(diǎn)P、Q同時(shí)從AB兩點(diǎn)出發(fā),分別沿ABBC方向勻速移動(dòng),它們的速度都是1 cm/s,當(dāng)點(diǎn)P到達(dá)點(diǎn)B時(shí),PQ兩點(diǎn)停止運(yùn)動(dòng),設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為ts),則(1BP cm,BQ cm.(用含t的代數(shù)式表示)

2)當(dāng)t為何值時(shí),PBQ是直角三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一次函數(shù)y=kx+b的圖象經(jīng)過(guò)點(diǎn)A(-4,0),B(2,6)兩點(diǎn).

(1)求一次函數(shù)y=kx+b的表達(dá)式;

(2)在直角坐標(biāo)系中,畫(huà)出這個(gè)函數(shù)的圖象;

(3)求這個(gè)一次函數(shù)與坐標(biāo)軸圍成的三角形面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖梯形ABCD,ABCD,點(diǎn)E,F,G分別是BD,AC,DC的中點(diǎn).已知兩底之差是6,兩腰之和是12,EFG的周長(zhǎng)是(  )

A. 8 B. 9 C. 10 D. 12

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等邊三角形內(nèi)接于,點(diǎn)P在弧BC上,PABC相交于點(diǎn)D,若PB=3,PC=6,PD=( )

A. 1.5 B. C. 2 D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在三角形的三個(gè)內(nèi)角中,最多有_________個(gè)直角,最多有_____________個(gè)鈍角.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖, ,射線,且, ,點(diǎn)是線段(不與點(diǎn)、重合)上的動(dòng)點(diǎn),過(guò)點(diǎn)交射線于點(diǎn),連結(jié)

)如圖,若,求證:

)如圖,若平分,試猜測(cè)的數(shù)量關(guān)系,并說(shuō)明理由.

)若是等腰三角形,作點(diǎn)關(guān)于的對(duì)稱點(diǎn),連結(jié),則__________.(請(qǐng)直接寫出答案)

查看答案和解析>>

同步練習(xí)冊(cè)答案