【題目】閱讀下列材料: 解答“已知x﹣y=2,且x>1,y<0,試確定x+y的取值范圍”有如下解法:
解:∵x﹣y=2,又∵x>1,∴y+2>1,即y>﹣1
又y<0,∴﹣1<y<0.…①
同理得:1<x<2.…②
由①+②得﹣1+1<y+x<0+2,∴x+y的取值范圍是0<x+y<2.
請按照上述方法,完成下列問題:
已知關(guān)于x、y的方程組 的解都為非負(fù)數(shù).
(1)求a的取值范圍;
(2)已知2a﹣b=1,且,求a+b的取值范圍;
(3)已知a﹣b=m(m是大于1的常數(shù)),且b≤1,求2a+b最大值.(用含m的代數(shù)式表示)
【答案】
(1)解:因為關(guān)于x、y的方程組 的解都為非負(fù)數(shù),
解得: ,
可得: ,
解得:a≥2
(2)解:由2a﹣b=1,
可得: ,
可得: ,
解得:b≥3,
所以a+b≥5
(3)解: ,
所以m+b≥2,
可得: ,
可得:2﹣m≤b≤1,
同理可得:2≤a≤1+m,
所以可得:6﹣m≤2a+b≤3+2m,
最大值為3+2m
【解析】(1)先把a當(dāng)作已知求出x、y的值,再根據(jù)x、y的取值范圍得到關(guān)于a的一元一次不等式組,求出a的取值范圍即可;(2)根據(jù)閱讀材料所給的解題過程,分別求得a、b的取值范圍,然后再來求a+b的取值范圍;(3)根據(jù)(1)的解題過程求得a、b取值范圍;結(jié)合限制性條件得出結(jié)論即可.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線y=﹣x2+2x+3與x軸相交于A、B兩點(點A在點B的左側(cè)),與y軸相交于點C.
(1)直接寫出A、B、C三點的坐標(biāo)和拋物線的對稱軸;
(2)如圖2,連接BC,與拋物線的對稱軸交于點E,點P為線段BC上的一個動點,過點P作PF∥DE交拋物線于點F,設(shè)點P的橫坐標(biāo)為m;用含m的代數(shù)式表示線段PF的長;并求出當(dāng)m為何值時,四邊形PEDF為平行四邊形?
(3)如圖3,連接AC,在x軸上是否存在點Q,使△ACQ為等腰三角形,若存在,請求出點Q的坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某一線城市對出租車營運價進(jìn)行了調(diào)整,調(diào)價前后的收費標(biāo)準(zhǔn)對比如下:調(diào)整前,3公里及3公里以內(nèi)12.5元,3公里后里程價2.4元/公里,無返空費;調(diào)整后, 2公里及2公里以內(nèi)10元,2公里后里程價2.4元/公里,超過25公里部分,按里程價的30%加收返空費.
(1)請你幫忙計算一下,調(diào)價后,若乘客乘坐出租車的行程為8公里,他比以前少付了多少錢(不考慮紅燈等因素)?
(2)網(wǎng)上流傳“24公里換車”規(guī)避返空費,即乘客的行程超過25公里,就在24公里處下車,換乘另一輛出租車.但其實并不是所有行程超過25公里的乘客都需要換車.
例如:①若行程為30公里:不換車,總費用為:
10+23×2.4+5×2.4×130%=80.8元;
換車,總費用為:10+22×2.4+10+4×2.4=82.4元,因此,行程30公里若換車,則費用反而增加2.4元.
②若行程為40公里,不換車,總費用為:
10+23×2.4+15×2.4×130%=112元,若換車,總費用為:10+22×2.4+10+2.4×14=106.4元,則可節(jié)約5.6元.
若設(shè)行程為x 公里(26<x<48 ),請用含x的式子分別表示出不換車的費用和換車的費用,并幫忙計算一下,行程超過多少公里后換車會就會節(jié)約費用(不考慮紅燈等因素).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校一棟5層的教學(xué)大樓,第一層沒有教室,二至五層,每層樓有6間教室,進(jìn)出這棟大樓共有兩道大小相同的大門和一道小門(平時小門不開).安全檢查中,對這3道門進(jìn)行了測試:當(dāng)同時開啟一道大門和一道小門時,3分鐘內(nèi)可以通過540名學(xué)生,若一道大門平均每分鐘比一道小門可多通過60名學(xué)生.
(1)求平均每分鐘一道大門和一道小門各可以通過多少名學(xué)生?
(2)檢查中發(fā)現(xiàn),緊急情況時因?qū)W生擁擠,出門的效率降低20%.安全檢查規(guī)定:在緊急情況下全大樓的學(xué)生應(yīng)在5分鐘內(nèi)安全撤離.這棟教學(xué)大樓每間教室平均有45名學(xué)生,問:在緊急情況下只開啟兩道大門是否可行?為什么?3道門都開啟呢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場試銷一種成本為50元/件的恤.經(jīng)試銷發(fā)現(xiàn),銷售量(件)與銷售單價(元/件)符合一次函數(shù)關(guān)系,試銷數(shù)據(jù)如下表:
售價(元/件) | …… | 55 | 60 | 70 | …… |
銷量(件) | …… | 75 | 70 | 60 | …… |
(1)求一次函數(shù)的表達(dá)式;
(2)若該商場獲得利潤為W元,試寫出利潤W與銷售單價之間的關(guān)系式;銷售單價定為多少時,商場可獲得最大利潤,最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖A、B分別為數(shù)軸上的兩點,A點對應(yīng)的數(shù)為-10,B點對應(yīng)的數(shù)為70.
⑴請寫出AB的中點M對應(yīng)的數(shù)
⑵現(xiàn)在有一只電子螞蟻P從A點出發(fā),以3個單位/秒的速度向右運動,同時另一只電子螞蟻Q恰好從B點出發(fā),以2個單位/秒的速度向左運動,設(shè)兩只電子螞蟻在數(shù)軸上的C點相遇,請你求出C點對應(yīng)的數(shù) .
⑶若當(dāng)電子螞蟻P從A點出發(fā),以3個單位/秒的速度向右運動,同時另一只電子螞蟻Q恰好從B點出發(fā),以2單位/秒的速度向左運動,經(jīng)過多長時間兩只電子螞蟻在數(shù)軸上相距35個單位長度,并寫出此時P點對應(yīng)的數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列由四舍五入得到的近似數(shù)說法正確的是( )
A.0.720精確到百分位
B.5.078×104精確到千分位
C.3.6萬精確到十分位
D.2.90精確到0.01
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,分別以點A和點B為圓心,大于 AB的長為半徑畫弧,兩弧相交于點M,N,作直線MN,交BC于點D,連接AD.若△ADC的周長為10,AB=7,則△ABC的周長為( )
A.7
B.14
C.17
D.20
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某中學(xué)有一塊四邊形的空地ABCD,學(xué)校計劃在空地上種植草皮,經(jīng)測量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,問學(xué)校需要投入多少資金買草皮?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com