【題目】某校為了解學(xué)生對(duì)排球、羽毛球、足球、籃球(以下分別用A、B、C、D表示)這四種球類(lèi)運(yùn)動(dòng)的喜好情況.對(duì)全體學(xué)生進(jìn)行了抽樣調(diào)查(每位學(xué)生只能選一項(xiàng)最喜歡的運(yùn)動(dòng)),并將調(diào)查情況繪制成如下兩幅不完整的統(tǒng)計(jì)圖.
請(qǐng)根據(jù)以上信息回答下面問(wèn)題:
(1)本次參加抽樣調(diào)查的學(xué)生有 人.
(2)補(bǔ)全兩幅統(tǒng)計(jì)圖.
(3)若從本次參加抽樣調(diào)查的學(xué)生中任取1人,則此人喜歡哪類(lèi)球的概率最大?求其概率.
【答案】(1)600;(2)見(jiàn)解析;(3)0.4.
【解析】
(1)根據(jù)B組人數(shù)統(tǒng)計(jì)百分比求出總?cè)藬?shù)即可.
(2)求出C組人數(shù),A,C兩組的百分比畫(huà)出條形圖,扇形統(tǒng)計(jì)圖即可.
(3)喜歡藍(lán)球的人數(shù)最多,因此此人喜歡籃球的概率最大.
(1)總?cè)藬?shù)=60÷10%=600(人)
故答案為600.
(2)如下圖:
(3)240÷600=0.4
此人喜歡藍(lán)球的概率最大,其概率是0.4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠(chǎng)計(jì)劃生產(chǎn)A、B兩種產(chǎn)品共50件,需購(gòu)買(mǎi)甲、乙兩種材料.生產(chǎn)一件A產(chǎn)品需甲種材料30千克、乙種材料10千克;生產(chǎn)一件B產(chǎn)品需甲、乙兩種材料各20千克.經(jīng)測(cè)算,購(gòu)買(mǎi)甲、乙兩種材料各1千克共需資金40元,購(gòu)買(mǎi)甲種材料2千克和乙種材料3千克共需資金105元.
(1)甲、乙兩種材料每千克分別是多少元?
(2)現(xiàn)工廠(chǎng)用于購(gòu)買(mǎi)甲、乙兩種材料的資金不超過(guò)38000元,且生產(chǎn)B產(chǎn)品不少于28件,問(wèn)符合條件的生產(chǎn)方案有哪幾種?
(3)在(2)的條件下,若生產(chǎn)一件A產(chǎn)品需加工費(fèi)200元,生產(chǎn)一件B產(chǎn)品需加工費(fèi)300元,應(yīng)選擇哪種生產(chǎn)方案,使生產(chǎn)這50件產(chǎn)品的成本最低?(成本=材料費(fèi)+加工費(fèi))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,正方形ABCD,∠EAF=45°,
(1)如圖1,當(dāng)點(diǎn)E,F分別在邊BC,CD上,連接EF,求證:EF=BE+DF;
(2)如圖2,點(diǎn)M,N分別在邊AB,CD上,且BN=DM,當(dāng)點(diǎn)E,F分別在BM,DN上,連接EF,請(qǐng)?zhí)骄烤(xiàn)段EF,BE,DF之間滿(mǎn)足的數(shù)量關(guān)系,并加以證明;
(3)如圖3,當(dāng)點(diǎn)E,F分別在對(duì)角線(xiàn)BD,邊CD上,若FC=2,則BE的長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某區(qū)域平面示意圖如圖,點(diǎn)O在河的一側(cè),AC和BC表示兩條互相垂直的公路.甲勘測(cè)員在A(yíng)處測(cè)得點(diǎn)O位于北偏東45°,乙勘測(cè)員在B處測(cè)得點(diǎn)O位于南偏西73.7°,測(cè)得AC=840m,BC=500m.請(qǐng)求出點(diǎn)O到BC的距離.參考數(shù)據(jù):sin73.7°≈,cos73.7°≈,tan73.7°≈
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=4,BC=3,以點(diǎn)A為原點(diǎn)建立平面直角坐標(biāo)系,使AB在x軸正半軸上,點(diǎn)D是AC邊上的一個(gè)動(dòng)點(diǎn),DE∥AB交BC于E,DF⊥AB于F,EG⊥AB于G.以下結(jié)論:
①△AFD∽△DCE∽△EGB;
②當(dāng)D為AC的中點(diǎn)時(shí),△AFD≌△DCE;
③點(diǎn)C的坐標(biāo)為(3.2,2.4);
④將△ABC沿AC所在的直線(xiàn)翻折到原來(lái)的平面,點(diǎn)B的對(duì)應(yīng)點(diǎn)B1的坐標(biāo)為(1.6,4.8);
⑤矩形DEGF的最大面積為3.在這些結(jié)論中正確的有_____(只填序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC,AB=AC,D為直線(xiàn)BC上一點(diǎn),E為直線(xiàn)AC上一點(diǎn),AD=AE,設(shè)∠BAD=α,∠CDE=β,
(1)如圖1,若點(diǎn)D在線(xiàn)段BC上,點(diǎn)E在線(xiàn)段AC上.∠ABC=60°,∠ADE=70°,則α= °;β= °.
(2)如圖2,若點(diǎn)D在線(xiàn)段BC上,點(diǎn)E在線(xiàn)段AC上,則α,β之間有什么關(guān)系式?說(shuō)明理由.
(3)是否存在不同于(2)中的α,β之間的關(guān)系式?若存在,請(qǐng)寫(xiě)出這個(gè)關(guān)系式(寫(xiě)出一種即可),說(shuō)明理由;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知⊙A與菱形ABCD的邊BC相切于點(diǎn)E,與邊AB相交于點(diǎn)F,連接EF.
(1)求證:CD是⊙A的切線(xiàn);
(2)若⊙A的半徑為2,tan∠BEF=,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是邊長(zhǎng)為a的正方形,點(diǎn)G、E分別是邊AB、BC的中點(diǎn),∠AEF=90°,且EF交正方形外角的平方線(xiàn)CF于點(diǎn)F.
(1)證明:△AGE≌△ECF;(2)求△AEF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AD∥BC,AB⊥BC于點(diǎn)B,AD=4,將CD繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°至DE,連接AE、CE,若△ADE的面積為6,則BC=_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com