【題目】為提高學生的閱讀興趣,某學校建立了共享書架,并購買了一批書籍.其中購買種圖書花費了3000元,購買種圖書花費了1600元,A種圖書的單價是種圖書的1.5倍,購買種圖書的數(shù)量比種圖書多20本.

1)求兩種圖書的單價;

2)書店在世界讀書日進行打折促銷活動,所有圖書都按8折銷售學校當天購買了種圖書20本和種圖書25本,共花費多少元?

【答案】1種圖書的單價為30元,種圖書的單價為20元;(2)共花費880元.

【解析】

(1)設(shè)種圖書的單價為元,則種圖書的單價為元,根據(jù)數(shù)量=總價÷單價結(jié)合花3000元購買的種圖書比花1600元購買的種圖書多20本,即可得出關(guān)于的分式方程,解之經(jīng)檢驗后即可得出結(jié)論;

(2)根據(jù)總價=單價×數(shù)量,即可求出結(jié)論.

1)設(shè)種圖書的單價為元,則種圖書的單價為元,

依題意,得:,

解得:,

經(jīng)檢驗,是所列分式方程的解,且符合題意,

答:種圖書的單價為30元,種圖書的單價為20元.

2(元).

答:共花費880元.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】在等邊△ABC外作射線AD,使得ADAC在直線AB的兩側(cè),∠BAD=α(0°<α<180°),點B關(guān)于直線AD的對稱點為P,連接PB,PC.

(1)依題意補全圖1;

(2)在圖1中,求△BPC的度數(shù);

(3)直接寫出使得△PBC是等腰三角形的α的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列說法中,錯誤的是(

A.在直角三角形ABC中,已知兩邊長為34,則第三邊長一定為5;

B.三角形的三邊ab、c滿足a2+b2=c2,則∠C=90°;

C.ABC中,若∠A:∠B:∠C=123,則△ABC是直角三角形;

D.ABC中,若abc=345,則這個三角形是直角三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在正方形ABCD中,對角線BD所在的直線上有兩點E、F滿足BE=DF,連接AE、AF、CE、CF,如圖所示

(1)求證:△ABE≌△ADF;

(2)試判斷四邊形AECF的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,AB<AD,D=30°,CD=4,以AB為直徑的⊙OBC于點E,則陰影部分的面積為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)如圖1,計算下列五角星圖案中五個頂角的度數(shù)和. 即:求∠A+B+C+D+E的大小.

2)如圖2,若五角星的五個頂角的度數(shù)相等, 求∠1的大小.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】寫出下列事件發(fā)生的可能性,并標在圖中的大致位置上.

(1)袋中有10個紅球,摸到紅球;

(2)袋中有10個紅球,摸到白球;

(3)一副混合均勻的撲克牌(除去大、小王),從中任意抽取一張,這一張恰好是A;

(4)一個布袋中有2個黑球和2個白球,從中任意摸出一個球,恰好是黑球;

(5)任意擲出一個質(zhì)地均勻的骰子(每個面上分別標有數(shù)字1,2,3,4,5,6),朝上一面的數(shù)字大于2.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)某校招聘教師一名,現(xiàn)有甲、乙、丙三人通過專業(yè)知識、講課、答辯三項測試,他們各自的成績?nèi)缦卤硭荆?/span>

應(yīng)聘者

專業(yè)知識

講課

答辯

70

85

80

90

85

75

80

90

85

按照招聘簡章要求,對專業(yè)知識、講課、答辯三項賦權(quán)5:4:1.請計算三名應(yīng)聘者的平均成績,從成績看,應(yīng)該錄取誰?

(2)我市舉行了某學科實驗操作考試,有A、B、C、D四個實驗,規(guī)定每位學生只參加其中一個實驗的考試,并由學生自己抽簽決定具體的考試實驗.小王,小張,小厲都參加了本次考試.

①小厲參加實驗D考試的概率是   ;

②用列表或畫樹狀圖的方法求小王、小張抽到同一個實驗的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下列材料,解答問題

(2x﹣5)2+(3x+7)2=(5x+2)2

解:設(shè)m=2x﹣5,n=3x+7,則m+n=5x+2

則原方程可化為m2+n2=(m+n)2

所以mn=0,即(2x﹣5)(3x+7)=0

解之得,x1=,x2=﹣

請利用上述方法解方程(4x﹣5)2+(3x﹣2)2=(x﹣3)2

查看答案和解析>>

同步練習冊答案