【題目】下列說(shuō)法中不正確的是( )
A. 等邊三角形是軸對(duì)稱(chēng)圖形
B. 若兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線(xiàn)都被同一條直線(xiàn)垂直平分,則這兩個(gè)圖形關(guān)于這條直線(xiàn)對(duì)稱(chēng)
C. 若△ABC≌△ ,則這兩個(gè)三角形一定關(guān)于一條直線(xiàn)對(duì)稱(chēng)
D. 直線(xiàn)MN是線(xiàn)段AB的垂直平分線(xiàn),若P點(diǎn)使PA=PB,則點(diǎn)P在MN上,若,則不在MN上
【答案】C
【解析】
根據(jù)軸對(duì)稱(chēng)圖形的定義和性質(zhì)逐項(xiàng)判斷即可.
解:A. 等邊三角形是軸對(duì)稱(chēng)圖形,正確;
B. 若兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線(xiàn)都被同一條直線(xiàn)垂直平分,則這兩個(gè)圖形關(guān)于這條直線(xiàn)對(duì)稱(chēng),正確;
C. 全等的兩個(gè)三角形不一定關(guān)于一條直線(xiàn)對(duì)稱(chēng),原說(shuō)法錯(cuò)誤;
D.直線(xiàn)MN是線(xiàn)段AB的垂直平分線(xiàn),若P點(diǎn)使PA=PB,則點(diǎn)P在MN上,若,則不在MN上,正確,
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知拋物線(xiàn)y=x2+2x﹣3與x軸相交于A,B兩點(diǎn),與y軸交于點(diǎn)C,D為頂點(diǎn).
(1)求直線(xiàn)AC的解析式和頂點(diǎn)D的坐標(biāo);
(2)已知E(0, ),點(diǎn)P是直線(xiàn)AC下方的拋物線(xiàn)上一動(dòng)點(diǎn),作PR⊥AC于點(diǎn)R,當(dāng)PR最大時(shí),有一條長(zhǎng)為的線(xiàn)段MN(點(diǎn)M在點(diǎn)N的左側(cè))在直線(xiàn)BE上移動(dòng),首尾順次連接A、M、N、P構(gòu)成四邊形AMNP,請(qǐng)求出四邊形AMNP的周長(zhǎng)最小時(shí)點(diǎn)N的坐標(biāo);
(3)如圖2,過(guò)點(diǎn)D作DF∥y軸交直線(xiàn)AC于點(diǎn)F,連接AD,Q點(diǎn)是線(xiàn)段AD上一動(dòng)點(diǎn),將△DFQ沿直線(xiàn)FQ折疊至△D1FQ,是否存在點(diǎn)Q使得△D1FQ與△AFQ重疊部分的圖形是直角三角形?若存在,請(qǐng)求出AQ的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABD、△CBD關(guān)于直線(xiàn)BD對(duì)稱(chēng),點(diǎn)E是BC上一點(diǎn),線(xiàn)段CE的垂直平分線(xiàn)交BD于點(diǎn)F,連接AF、EF.
(1) 求證:AF=EF;
(2) 如圖2,連接AE交BD于點(diǎn)G.若EF∥CD,求證:;
(3) 如圖3,若∠BAD=90°,且點(diǎn)E在BF的垂直平分線(xiàn)上,tan∠ABD=,DF=,請(qǐng)直接寫(xiě)出AF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,AD⊥CD,BE⊥CD,AD=3,DE=4,則BE= ______ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地區(qū)教育部門(mén)為了解初中數(shù)學(xué)課堂中學(xué)生參與情況,并按“主動(dòng)質(zhì)疑、獨(dú)立思考、專(zhuān)注聽(tīng)講、講解題目”四個(gè)項(xiàng)目進(jìn)行評(píng)價(jià).檢測(cè)小組隨機(jī)抽查部分學(xué)校若干名學(xué)生,并將抽查學(xué)生的課堂參與情況繪制成如圖所示的扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖(均不完整).請(qǐng)根據(jù)統(tǒng)計(jì)圖中的信息解答下列問(wèn)題:
(1)本次抽查的樣本容量是 ;
(2)在扇形統(tǒng)計(jì)圖中,“主動(dòng)質(zhì)疑”對(duì)應(yīng)的圓心角為 度;
(3)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(4)如果該地區(qū)初中學(xué)生共有60000名,那么在課堂中能“獨(dú)立思考”的學(xué)生約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)a,b是任意兩個(gè)不等實(shí)數(shù),我們規(guī)定:滿(mǎn)足不等式a≤x≤b的實(shí)數(shù)x的所有取值的全體叫做閉區(qū)間,表示為[a,b].對(duì)于一個(gè)函數(shù),如果它的自變量x與函數(shù)值y滿(mǎn)足:當(dāng)m≤x≤n時(shí),有m≤y≤n,我們就稱(chēng)此函數(shù)是閉區(qū)間[m,n]上的“閉函數(shù)”.如函數(shù)y=﹣x+4,當(dāng)x=1時(shí),y=3;當(dāng)x=3時(shí),y=1,即當(dāng)1≤x≤3時(shí),恒有1≤y≤3,所以說(shuō)函數(shù)y=﹣x+4是閉區(qū)間[1,3]上的“閉函數(shù)”,同理函數(shù)y=x也是閉區(qū)間[1,3]上的“閉函數(shù)”.
(1)反比例函數(shù)y=是閉區(qū)間[1,2018]上的“閉函數(shù)”嗎?請(qǐng)判斷并說(shuō)明理由;
(2)如果已知二次函數(shù)y=x2﹣4x+k是閉區(qū)間[2,t]上的“閉函數(shù)”,求k和t的值;
(3)如果(2)所述的二次函數(shù)的圖象交y軸于C點(diǎn),A為此二次函數(shù)圖象的頂點(diǎn),B為直線(xiàn)x=1上的一點(diǎn),當(dāng)△ABC為直角三角形時(shí),寫(xiě)出點(diǎn)B的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若將一幅三角板按如圖所示的方式放置,則下列結(jié)論中不正確的是( )
A. ∠1=∠3 B. 如果∠2=30°,則有AC∥DE
C. 如果∠2=30°,則有BC∥AD D. 如果∠2=30°,必有∠4=∠C
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是某路燈在鉛垂面內(nèi)的示意圖,燈柱AC的高為11米,燈桿AB與燈柱AC的夾角∠A=120°,路燈采用錐形燈罩,在地面上的照射區(qū)域DE長(zhǎng)為18米,從D,E兩處測(cè)得路燈B的仰角分別為α和β,且tanα=6,tanβ=,求燈桿AB的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,延長(zhǎng)AB至點(diǎn)D,使DB=AB,連接CD,以CD為邊作等腰直角三角形CDE,其中∠DCE=90°,連接BE.
(1)求證:△ACD≌△BCE;
(2)若AB=2cm,則BE=_______cm.
(3)BE與AD有何位置關(guān)系?請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com