【題目】為了解余姚市對“垃圾分類知識”的知曉程度,某數(shù)學學習興趣小組對市民進行隨機抽樣的問卷調(diào)查,調(diào)查結(jié)果分為“A.非常了解”、“B.了解”、“C.基本了解”、“D.不太了解”四個等級進行統(tǒng)計,并將統(tǒng)計結(jié)果繪制成了如下兩幅不完整的統(tǒng)計圖(圖1、圖2),請根據(jù)圖中的信息解答下列問題.
(1)這次調(diào)查的市民人數(shù)為 人,圖2中,m=
(2)補全圖1中的條形統(tǒng)計圖;
(3)據(jù)統(tǒng)計,2017年余姚約有市民140萬人,那么根據(jù)抽樣調(diào)查的結(jié)果,可估計對“垃圾分類知識”的知曉程度為“B.了解”的市民約有多少萬人?
【答案】(1)1000,28;(2)見解析;(3)估計對“垃圾分類知識”的知曉程度為“B.了解”的市民約有49萬人
【解析】
(1)根據(jù)C類的人數(shù)和所占的百分比求出調(diào)查的總?cè)藬?shù),再根據(jù)A類的人數(shù)求出A類所占的百分比,從而求出n的值;
(2)根據(jù)求出的總?cè)藬?shù)即可求出B類的人數(shù),從而補全統(tǒng)計圖;
(3)用2017年余姚市約有的市民乘以“B.了解”所占的百分比即可得出答案.
(1)本次調(diào)查的市民人數(shù)為200÷20%=1000人,m=×100=28.
故答案為:1000、28;
(2)B等級人數(shù)為1000﹣(280+200+170)=350(人),補全圖形如下:
(3)140×=49(萬人).
答:估計對“垃圾分類知識”的知曉程度為“B.了解”的市民約有49萬人.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC是等邊三角形,AD是BC邊上的高,E是AC的中點,P是AD上的一個動點,當PC與PE的和最小時,∠CPE的度數(shù)是_____________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校初二年級數(shù)學考試,(滿分為100分,該班學生成績均不低于50分)作了統(tǒng)計分析,繪制成如圖頻數(shù)分布直方圖和頻數(shù)、頻率分布表,請你根據(jù)圖表提供的信息,解答下列問題:
分組 | 49.5~59.5 | 59.5~69.5 | 69.5~79.5 | 79.5~89.5 | 89.5~100.5 | 合計 |
頻數(shù) | 2 | a | 20 | 16 | 4 | 50 |
頻率 | 0.04 | 0.16 | 0.40 | 0.32 | b | 1 |
(1)頻數(shù)、頻率分布表中a= ,b= ;(答案直接填在題中橫線上)
(2)補全頻數(shù)分布直方圖;
(3)若該校八年級共有600名學生,且各個班級學生成績分布基本相同,請估計該校八年級上學期期末考試成績低于70分的學生人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等腰 Rt△ABC 中,∠BAC=90°,AD⊥BC 于D,∠ABC 的平分線分別交 AC,AD 于E,F,點M 為 EF 的中點,AM 的延長線交 BC 于N,連接 DM,NF,EN.下列結(jié)論:①△AFE為等腰三角形;②△BDF≌△ADN;③NF所在的直線垂直平分AB;④DM平分∠BMN;⑤AE=EN=NC;⑥.其中正確結(jié)論的個數(shù)是( )
A.2個B.3個C.4個D.5個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,E為邊BC上的點,且AB=AE,D為線段BE的中點,連接AD,過點E作EF⊥AE,過點A作AF∥BC,且AF,EF相交于點F.
(1)求證:∠B=∠DAC.
(2)求證:AC=EF.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商城銷售A,B兩種自行車,A型自行車售價為2200元/輛,B型自行車售價為1750元/輛,每輛A型自行車的進價比每輛B型自行車的進價多400元,商城用80000元購進A型自行車的數(shù)量與用64000元購進B型自行車的數(shù)量相等.
(1)求A,B兩種自行車的進價分別是多少元/輛?
(2)現(xiàn)在商城準備一次購進這兩種自行車共100輛,設(shè)購進A型自行車m輛,這100輛自行車的銷售總利潤為w元,要求購進B型自行車數(shù)量不少于A型自行車數(shù)量的2倍,且A型車輛至少30輛,請用含m的代數(shù)式表示w,并求獲利最大的方案以及最大利潤.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】ΔABC、ΔCDE都是等邊三角形,AD、BE相交于點O,點M、點N分別是線段AD、BE的中點.
(1)證明: AD=BE.(2)求∠DOE的角度。(3)證明:ΔMNC是等邊三角形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某學校為了增強學生體質(zhì),決定開設(shè)以下體育課外活動項目:A:籃球 B:乒乓球C:羽毛球 D:足球,為了解學生最喜歡哪一種活動項目,隨機抽取了部分學生進行調(diào)查,并將調(diào)查結(jié)果繪制成了兩幅不完整的統(tǒng)計圖,請回答下列問題:
(1)這次被調(diào)查的學生共有 人;
(2)請你將條形統(tǒng)計圖(2)補充完整;
(3)在平時的乒乓球項目訓練中,甲、乙、丙、丁四人表現(xiàn)優(yōu)秀,現(xiàn)決定從這四名同學中任選兩名參加乒乓球比賽,求恰好選中甲、乙兩位同學的概率(用樹狀圖或列表法解答)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,E為CD的中點,連接AE、BE,BE⊥AE,延長AE交BC的延長線于點F. 已知AD=2cm,BC=5cm.
(1)求證:FC=AD;
(2)求AB的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com